AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Application of chemical vapor–deposited monolayer ReSe2 in the electrocatalytic hydrogen evolution reaction

Shaolong Jiang1,2Zhepeng Zhang1,2Na Zhang2Yahuan Huan1,2Yue Gong3,4Mengxing Sun5Jianping Shi1,2Chunyu Xie1,2Pengfei Yang1,2Qiyi Fang1,2He Li1Lianming Tong2Dan Xie5Lin Gu3,4,6Porun Liu7Yanfeng Zhang1,2( )
Department of Materials Science and EngineeringCollege of EngineeringPeking UniversityBeijing100871China
Center for Nanochemistry (CNC)Beijing National Laboratory for Molecular SciencesCollege of Chemistry and Molecular EngineeringPeking UniversityBeijing100871China
Beijing National Laboratory for Condensed Matter PhysicsInstitute of PhysicsChinese Academy of SciencesBeijing100190China
School of Physical SciencesUniversity of Chinese Academy of SciencesBeijing100190China
Institute of MicroelectronicsTsinghua National Laboratory for Information Science and Technology (TNList)Tsinghua UniversityBeijing100084China
Collaborative Innovation Center of Quantum MatterBeijing100190China
Centre for Clean Environment and EnergyGriffith UniversityGold Coast4222Australia
Show Author Information

Graphical Abstract

Abstract

Controlled synthesis of structurally anisotropic rhenium diselenide (ReSe2) with macroscopically uniform and strictly monolayer thickness as well as tunable domain shape/size is of great interest for electronics-, optoelectronics-, and electrocatalysis-related applications. Herein, we describe the controlled synthesis of uniform monolayer ReSe2 flakes with variable morphology (sunflower- or truncated-triangle-shaped) on SiO2/Si substrates using different ambient-pressure chemical vapor deposition (CVD) setups. The prepared polycrystalline ReSe2 flakes were transferred intact onto Au foil electrodes and tested for activity in the hydrogen evolution reaction (HER). Interestingly, compared to the compact truncated-triangle-shaped ReSe2 flakes, their edge-abundant sunflower-shaped counterparts exhibited superior electrocatalytic HER activity, featuring a relatively low Tafel slope of ~76 mV/dec and an exchange current density of 10.5 μA/cm2. Thus, our work demonstrates that CVD-grown ReSe2 is a promising two-dimensional anisotropic material for applications in the electrocatalytic HER.

Electronic Supplementary Material

Download File(s)
12274_2017_1796_MOESM1_ESM.pdf (752.1 KB)

References

1

Wang, Q. H.; Kalantar-Zadeh, K.; Kis, A.; Coleman, J. N.; Strano, M. S. Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. Nat. Nanotechnol. 2012, 7, 699–712.

2

Cheng, R.; Jiang, S.; Chen, Y.; Liu, Y.; Weiss, N.; Cheng, H. C.; Wu, H.; Huang, Y.; Duan, X. F. Few-layer molybdenum disulfide transistors and circuits for high-speed flexible electronics. Nat. Commun. 2014, 5, 5143.

3

Zhang, Y. S.; Shi, J. P.; Han, G. F.; Li, M. J.; Ji, Q. Q.; Ma, D. L.; Zhang, Y.; Li, C.; Lang, X.; Zhang, Y. F. et al. Chemical vapor deposition of monolayer WS2 nanosheets on Au foils toward direct application in hydrogen evolution. Nano Res. 2015, 8, 2881–2890.

4

Xu, X. D.; Yao, W.; Xiao, D.; Heinz, T. F. Spin and pseudospins in layered transition metal dichalcogenides. Nat. Phys. 2014, 10, 343–350.

5

Zeng, H. L.; Dai, J. F.; Yao, W.; Xiao, D.; Cui, X. D. Valley polarization in MoS2 monolayers by optical pumping. Nat. Nanotechnol. 2012, 7, 490–493.

6

Mak, K. F.; Lee, C.; Hone, J.; Shan, J.; Heinz, T. F. Atomically thin MoS2: A new direct-gap semiconductor. Phys. Rev. Lett. 2010, 105, 136805.

7

Ramakrishna Matte, H. S. S.; Gomathi, A.; Manna, A. K.; Late, D. J.; Datta, R.; Pati, S. K.; Rao, C. N. R. MoS2 and WS2 analogues of graphene. Angew. Chem., Int. Ed. 2010, 122, 4153–4156.

8

Wolverson, D.; Crampin, S.; Kazemi, A. S.; Ilie, A.; Bending, S. J. Raman spectra of monolayer, few-layer, and bulk ReSe2: An anisotropic layered semiconductor. ACS Nano 2014, 8, 11154–11164.

9

Lin, Y. C.; Komsa, H. P.; Yeh, C. H.; Björkman, T.; Liang, Z. Y.; Ho, C. H.; Huang, Y. S.; Chiu, P. W.; Krasheninnikov, A. V.; Suenaga, K. Single-layer ReS2: Two-dimensional semiconductor with tunable in-plane anisotropy. ACS Nano 2015, 9, 11249–11257.

10

Zhong, H. X.; Gao, S. Y.; Shi, J. J.; Yang, L. Quasiparticle band gaps, excitonic effects, and anisotropic optical properties of the monolayer distorted 1T diamond-chain structures ReS2 and ReSe2. Phys. Rev. B 2015, 92, 115438.

11

Lorchat, E.; Froehlicher, G.; Berciaud, S. Splitting of interlayer shear modes and photon energy dependent anisotropic Raman response in N-layer ReSe2 and ReS2. ACS Nano 2016, 10, 2752–2760.

12

Yang, S. X.; Wang, C.; Sahin, H.; Chen, H.; Li, Y.; Li, S. S.; Suslu, A.; Peeters, F. M.; Liu, Q.; Li, J. et al. Tuning the optical, magnetic, and electrical properties of ReSe2 by nanoscale strain engineering. Nano Lett. 2015, 15, 1660–1666.

13

Xu, K.; Deng, H. X.; Wang, Z. X.; Huang, Y.; Wang, F.; Li, S. S.; Luo, J. W.; He, J. Sulfur vacancy activated field effect transistors based on ReS2 nanosheets. Nanoscale 2015, 7, 15757–15762.

14

Cui, F. F.; Wang, C.; Li, X. B.; Wang, G.; Liu, K. Q.; Yang, Z.; Feng, Q. L.; Liang, X.; Zhang, Z. Y.; Liu, S. Z. et al. Tellurium-assisted epitaxial growth of large-area, highly crystalline ReS2 atomic layers on mica substrate. Adv. Mater. 2016, 28, 5019–5024.

15

Wu, J. X.; Mao, N. N.; Xie, L. M.; Xu, H.; Zhang, J. Identifying the crystalline orientation of black phosphorus using angle-resolved polarized Raman spectroscopy. Angew. Chem., Int. Ed. 2015, 54, 2366–2369.

16

Wang, X. M.; Jones, A. M.; Seyler, K. L.; Tran, V.; Jia, Y. C.; Zhao, H.; Wang, H.; Yang, L.; Xu, X. D.; Xia, F. N. Highly anisotropic and robust excitons in monolayer black phosphorus. Nat. Nanotechnol. 2015, 10, 517–521.

17

Yang, S. X.; Tongay, S.; Li, Y.; Yue, Q.; Xia, J. B.; Li, S. S.; Li, J. B.; Wei, S. H. Layer-dependent electrical and optoelectronic responses of ReSe2 nanosheet transistors. Nanoscale 2014, 6, 7226–7231.

18

Jo, S. H.; Park, H. Y.; Kang, D. H.; Shim, J.; Jeon, J.; Choi, S.; Kim, M.; Park, Y.; Lee, J.; Song, Y. J. et al. Broad detection range rhenium diselenide photodetector enhanced by (3-aminopropyl) triethoxysilane and triphenylphosphine treatment. Adv. Mater. 2016, 28, 6711–6718.

19

Wang, X. T.; Huang, L.; Peng, Y. T.; Huo, N. J.; Wu, K. D.; Xia, C. X.; Wei, Z. M.; Tongay, S.; Li, J. B. Enhanced rectification, transport property and photocurrent generation of multilayer ReSe2/MoS2 p–n heterojunctions. Nano Res. 2016, 9, 507–516.

20

Hart, L.; Dale, S.; Hoye, S.; Webb, J. L.; Wolverson, D. Rhenium dichalcogenides: Layered semiconductors with two vertical orientations. Nano Lett. 2016, 16, 1381–1386.

21

Fei, Z.; Wang, B.; Ho, C. H.; Lin, F.; Yuan, J.; Zhang, Z.; Jin, C. H. Direct identification of monolayer rhenium diselenide by an individual diffraction pattern. Nano Res. 2017, 10, 2535–2544.

22

Hafeez, M.; Gan, L.; Li, H. Q.; Ma, Y.; Zhai, T. Y. Chemical vapor deposition synthesis of ultrathin hexagonal ReSe2 flakes for anisotropic Raman property and optoelectronic application. Adv. Mater. 2016, 28, 8296–8301.

23

Zhang, E. Z.; Wang, P.; Li, Z.; Wang, H. F.; Song, C. Y.; Huang, C.; Chen, Z. G.; Yang, L.; Zhang, K. T.; Lu, S. H. et al. Tunable ambipolar polarization-sensitive photodetectors based on high-anisotropy ReSe2 nanosheets. ACS Nano 2016, 10, 8067–8077.

24

Kang, B.; Kim, Y.; Cho, J. H.; Lee, C. Ambipolar transport based on CVD-synthesized ReSe2. 2D Mater. 2017, 4, 025014.

25

Cui, F. F.; Li, X. B.; Feng, Q. L.; Yin, J. B.; Zhou, L.; Liu, D. Y.; Liu, K. Q.; He, X. X.; Liang, X.; Liu, S. Z. et al. Epitaxial growth of large-area and highly crystalline anisotropic ReSe2 atomic layer. Nano Res. 2017, 10, 2732–2742.

26

Jaramillo, T. F.; Jørgensen, K. P.; Bonde, J.; Nielsen, J. H.; Horch, S.; Chorkendorff, I. Identification of active edge sites for electrochemical H2 evolution from MoS2 nanocatalysts. Science 2007, 317, 100–102.

27

Kibsgaard, J.; Chen, Z. B.; Reinecke, B. N.; Jaramillo, T. F. Engineering the surface structure of MoS2 to preferentially expose active edge sites for electrocatalysis. Nat. Mater. 2012, 11, 963–969.

28

Tsai, C.; Abild-Pedersen, F.; Nørskov, J. K. Tuning the MoS2 edge-site activity for hydrogen evolution via support interactions. Nano Lett. 2014, 14, 1381–1387.

29

Shi, J. P.; Ma, D. L.; Han, G. F.; Zhang, Y.; Ji, Q. Q.; Gao, T.; Sun, J. Y.; Song, X. J.; Li, C.; Zhang, Y. S. et al. Controllable growth and transfer of monolayer MoS2 on Au foils and its potential application in hydrogen evolution reaction. ACS Nano 2014, 8, 10196–10204.

30

Li, C.; Zhang, Y.; Ji, Q. Q.; Shi, J. P.; Chen, Z. L.; Zhou, X. B.; Fang Q. Y.; Zhang, Y. F. Substrate effect on the growth of monolayer dendritic MoS2 on LaAlO3 (100) and its electrocatalytic applications. 2D Mater. 2016, 3, 035001.

31

Qi, F.; Wang, X. Q.; Zheng, B. J.; Chen, Y. F.; Yu, B.; Zhou, J. H.; He, J. R.; Li, P. J.; Zhang, W. L.; Li, Y. R. Self-assembled chrysanthemum-like microspheres constructed by few-layer ReSe2 nanosheets as a highly efficient and stable electrocatalyst for hydrogen evolution reaction. Electrochim. Acta 2017, 224, 593–599.

32

Jariwala, B.; Voiry, D.; Jindal, A.; Chalke, B. A.; Bapat, R.; Thamizhavel, A.; Chhowalla, M.; Deshmukh, M.; Bhattacharya, A. Synthesis and characterization of ReS2 and ReSe2 layered chalcogenide single crystals. Chem. Mater. 2016, 28, 3352–3359.

33

Zhang, Y.; Ji, Q. Q.; Wen, J. X.; Li, J.; Li, C.; Shi, J. P.; Zhou, X. B.; Shi, K. B.; Chen, H. J.; Li, Y. C. et al. Monolayer MoS2 dendrites on a symmetry-disparate SrTiO3 (001) substrate: formation mechanism and interface interaction. Adv. Funct. Mater. 2016, 26, 3299–3305.

34

Sørensen, S. G.; Füchtbauer, H. G.; Tuxen, A. K.; Walton, A. S.; Lauritsen, J. V. Structure and electronic properties of in situ synthesized single-layer MoS2 on a gold surface. ACS Nano 2014, 8, 6788–6796.

35

Zhou, X. B.; Shi, J. P.; Qi, Y.; Liu, M. X.; Ma, D. L.; Zhang, Y.; Ji, Q. Q.; Zhang, Z. P.; Li, C.; Liu, Z. F. et al. Periodic modulation of the doping level in striped MoS2 superstructures. ACS Nano 2016, 10, 3461–3468.

36

Zhao, H.; Wu, J. B.; Zhong, H. X.; Guo, Q. S.; Wang, X. M.; Xia, F. N.; Yang, L.; Tan, P. H.; Wang, H. Interlayer interactions in anisotropic atomically thin rhenium diselenide. Nano Res. 2015, 8, 3651–3661.

37

Hart, L.; Dale, S.; Hoye, S.; Webb, J. L.; Wolverson, D. Rhenium dichalcogenides: Layered semiconductors with two vertical orientations. Nano Lett. 2016, 16, 1381–1386.

38

Gao, J.; Li, L.; Tan, J. W.; Sun, H.; Li, B. C.; Idrobo, J. C.; Singh, C. V.; Lu, T. M.; Koratkar, N. Vertically oriented arrays of ReS2 nanosheets for electrochemical energy storage and electrocatalysis. Nano Lett. 2016, 16, 3780–3787.

Nano Research
Pages 1787-1797
Cite this article:
Jiang S, Zhang Z, Zhang N, et al. Application of chemical vapor–deposited monolayer ReSe2 in the electrocatalytic hydrogen evolution reaction. Nano Research, 2018, 11(4): 1787-1797. https://doi.org/10.1007/s12274-017-1796-8

812

Views

72

Crossref

N/A

Web of Science

76

Scopus

5

CSCD

Altmetrics

Received: 12 June 2017
Revised: 04 August 2017
Accepted: 04 August 2017
Published: 19 March 2018
© Tsinghua University Press and Springer-Verlag GmbH Germany 2017
Return