Shaping crystalline porous materials such as metal organic frameworks (MOFs) and zeolites into two-dimensional (2D) nanosheet forms is highly desirable for developing high-performance molecular sieving membranes. However, conventional exfoliation–deposition is complex and challenging for the large-scale fabrication of nanosheet MOF tubular membranes. Here, for the first time, we report a direct growth technique by ZnO self-conversion and ammonia assistance to fabricate zeolitic imidazolate framework (ZIF) membranes consisting of 2D nanosheets on porous hollow fiber substrates; the membranes are suitable for large-scale industrial gas separation processes. The proposed fabrication process for ZIF nanosheet membranes is based on the localized self-conversion of a pre-deposited thin layer of ZnO in a ligand solution containing ammonium hydroxide as a modulator. The resulting ZIF 2D nanosheet tubular membrane is highly oriented and only 50 nm in thickness. It exhibits excellent molecular sieving performance, with high H2 permeance and selectivity for H2/CO2 separation. This technique shows great promise in MOF nanosheet membrane fabrication for large-scale molecular sieving applications.
Li, H.; Song, Z. N.; Zhang, X. J.; Huang, Y.; Li, S. G.; Mao, Y. T.; Ploehn, H.; Bao, Y.; Yu, M. Ultrathin, molecular-sieving graphene oxide membranes for selective hydrogen separation. Science 2013, 342, 95–98.
Wang, S.; Cheng, F.; Zhang, P.; Li, W. C.; Lu, A. H. Fabrication of high-pore volume carbon nanosheets with uniform arrangement of mesopores. Nano Res. 2017, 10, 2106–2116.
Tsapatsis, M. 2-Dimensional zeolites. AIChE J. 2014, 60, 2374–2381.
Kim, W. G.; Nair, S. Membranes from nanoporous 1D and 2D materials: A review of opportunities, developments, and challenges. Chem. Eng. Sci. 2013, 104, 908–924.
Huang, X.; Zheng, B.; Liu, Z. D.; Tan, C. L.; Liu, J. Q.; Chen, B.; Li, H.; Chen, J. Z.; Zhang, X.; Fan, Z. X. et al. Coating two-dimensional nanomaterials with metal–organic frameworks. ACS Nano 2014, 8, 8695–8701.
Kagan, C. R.; Fernandez, L. E.; Gogotsi, Y.; Hammond, P. T.; Hersam, M. C.; Nel, A. E.; Penner, R. M.; Willson, C. G.; Weiss, P. S. Nano day: Celebrating the next decade of nanoscience and nanotechnology. ACS Nano 2016, 10, 9093–9103.
Kumar, P.; Agrawal, K. V.; Tsapatsis, M.; Mkhoyan, K. A. Quantification of thickness and wrinkling of exfoliated two-dimensional zeolite nanosheets. Nat. Commun. 2015, 6, 7128.
Shen, J.; Liu, G. P.; Huang, K.; Chu, Z. Y.; Jin, W. Q.; Xu, N. P. Subnanometer two-dimensional graphene oxide channels for ultrafast gas sieving. ACS Nano 2016, 10, 3398–3409.
He, K.; Cao, Z.; Liu, R. R.; Miao, Y.; Ma, H. Y.; Ding, Y. In situ decomposition of metal-organic frameworks into ultrathin nanosheets for the oxygen evolution reaction. Nano Res. 2016, 9, 1856–1865.
Meng, J. S.; Niu, C. J.; Xu, L. H.; Li, J. T.; Liu, X.; Wang, X. P.; Wu, Y. Z.; Xu, X. M.; Chen, W. Y.; Li, Q. et al. General oriented formation of carbon nanotubes from metal-organic frameworks. J. Am. Chem. Soc. 2017, 139, 8212–8221.
Liu, Y. Y.; Ng, Z. F.; Khan, E. A.; Jeong, H. K.; Ching, C. B.; Lai, Z. P. Synthesis of continuous MOF-5 membranes on porous α-alumina substrates. Micropor. Mesopor. Mater. 2009, 118, 296–301.
Liu, X. L.; Wang, C. H.; Wang, B.; Li, K. Novel organicdehydration membranes prepared from zirconium metalorganic frameworks. Adv. Funct. Mater. 2017, 27, 1604311.
Venna, S. R.; Carreon, M. A. Highly permeable zeolite imidazolate framework-8 membranes for CO2/CH4 separation. J. Am. Chem. Soc. 2010, 132, 76–78.
Li, Y. S.; Liang, F. Y.; Bux, H.; Feldhoff, A.; Yang, W. S.; Caro, J. Molecular sieve membrane: Supported metal-organic framework with high hydrogen selectivity. Angew. Chem., Int. Ed. 2010, 49, 548–551.
Liu, Q.; Wang, N. Y.; Caro, J.; Huang, A. S. Bio-inspired polydopamine: A versatile and powerful platform for covalent synthesis of molecular sieve membranes. J. Am. Chem. Soc. 2013, 135, 17679–17682.
Zhang, X. F.; Liu, Y. G.; Kong, L. Y.; Liu, H. O.; Qiu, J. S.; Han, W.; Weng, L. -T.; Yeung, K. L.; Zhu, W. D. A simple and scalable method for preparing low-defect ZIF-8 tubular membranes. J. Mater. Chem. A 2013, 1, 10635–10638.
Brown, A. J.; Brunelli, N. A.; Eum, K.; Rashidi, F.; Johnson, J. R.; Koros, W. J.; Nair, S. Interfacial microfluidic processing of metal-organic framework hollow fiber membranes. Science 2014, 345, 72–75.
Biswal, B. P.; Bhaskar, A.; Banerjee, R.; Kharul, U. K. Selective interfacial synthesis of metal–organic frameworks on a polybenzimidazole hollow fiber membrane for gas separation. Nanoscale 2015, 7, 7291–7298.
Cai, G. R.; Zhang, W.; Jiao, L.; Yu, S. H.; Jiang, H. L. Template-directed growth of well-aligned MOF arrays and derived self-supporting electrodes for water splitting. Chem 2017, 2, 791–802.
Zhang, X. F.; Liu, Y. G.; Li, S. H.; Kong, L. Y.; Liu, H. O.; Li, Y. S.; Han, W.; Yeung, K. L.; Zhu, W. D.; Yang, W. S. et al. New membrane architecture with high performance: ZIF-8 membrane supported on vertically aligned ZnO nanorods for gas permeation and separation. Chem. Mater. 2014, 26, 1975–1981.
Makiura, R.; Motoyanma, S.; Umemura, Y.; Yamanaka, H.; Sakata, O.; Kitagawa, H. Surface nano-architecture of a metal-organic framework. Nat. Mater. 2010, 9, 565–571.
Kumar, V.; Zhang, X. Y.; Elyassi, B.; Brewer, D. D.; Gettel, M.; Kumar, S.; Lee, J. A.; Maheshwari, S.; Mittal, A.; Sung, C. Y. et al. Dispersible exfoliated zeolite nanosheets and their application as a selective membrane. Science 2011, 334, 72–75.
Falcaro, P.; Okada, K.; Hara, T.; Ikigaki, K.; Tokudome, Y.; Thornton, A. W.; Hill, A. J.; Williams, T.; Doonan, C.; Takahashi, M. Centimetre-scale micropore alignment in oriented polycrystalline metal-organic framework films via heteroepitaxial growth. Nat. Mater. 2017, 16, 342–348.
Zhang, H.; Xiao, Q.; Guo, X. H.; Li, N. J.; Kumar, P.; Rangnekar, N.; Jeon, M. Y.; Al-Thabaiti, S.; Narasimharao, K.; Basahel, S. N. et al. Open-pore two-dimensional MFI zeolite nanosheets for the fabrication of hydrocarbon-isomerselective membranes on porous polymer supports. Angew. Chem., Int. Ed. 2016, 55, 7184–7187.
Peng, Y.; Li, Y. S.; Ban, Y. J.; Jin, H.; Jiao, W. M.; Liu, X. L.; Yang, W. S. Metal-organic framework nanosheets as building blocks for molecular sieving membranes. Science 2014, 346, 1356–1359.
Rodenas, T.; Luz, I.; Prieto, G.; Seoane, B.; Miro, H.; Corma, A.; Kapteijn, F.; Llabrés i Xamena, F. X.; Gascon, J. Metal-organic framework nanosheets in polymer composite materials for gas separation. Nat. Mater. 2015, 14, 48–55.
Ockwig, N. W.; Nenoff, T. M. Membranes for hydrogen separation. Chem. Rev. 2007, 107, 4078–4110.
Huang, A. S.; Dou, W.; Caro, J. Steam-stable zeolitic imidazolate framework ZIF-90 membrane with hydrogen selectivity through covalent functionalization. J. Am. Chem. Soc. 2010, 132, 15562–15564.
Li, J. R.; Sculley, J.; Zhou, H. C. Metal–organic frameworks for separations. Chem. Rev. 2012, 112, 869–932.
Yang, Q. F.; Cui, X. B.; Yu, J. H.; Lu, J.; Yu, X. Y.; Zhang, X.; Xu, J. Q.; Hou, Q.; Wang, T. G. A series of metal–organic complexes constructed from in situ generated organic amines. CrystEngComm 2008, 10, 1534–1541.
Fairen-Jimenez, D.; Galvelis, R.; Torrisi, A.; Gellan, A. D.; Wharmby, M. T.; Wright, P. A.; Mellot-Draznieks, C.; Düren, T. Flexibility and swing effect on the adsorption of energy-related gases on ZIF-8: Combined experimental and simulation study. Dalton Trans. 2012, 41, 10752–10762.
Khaletskaya, K.; Turner, S.; Tn, M.; Wannapaiboon, S.; Schneemann, A.; Meyer, R.; Ludwig, A.; van Tendeloo, G.; Fischer, R. A. Self-directed localization of ZIF-8 thin film formation by conversion of ZnO nanolayers. Adv. Funct. Mater. 2014, 24, 4804–4811.
Liu, Y.; Wang, N. Y.; Pan, J. H.; Steinbach, F.; Caro, J. In situ synthesis of MOF membranes on ZnAl-CO3 LDH buffer layer-modified substrates. J. Am. Chem. Soc. 2014, 136, 14353–14356.
Li, L. X.; Yao, F. F.; Wang, X. J.; Cheng, Y. B.; Wang, H. T. ZIF-11/polybenzimidazole composite membrane with improved hydrogen separation performance. J. Appl. Polym. Sci. 2014, 131, 41056.
Park, K.; Ni, Z.; Cote, A. P.; Choi, J. Y.; Huang, R.; Uribe-Romo, F. J.; Chae, H. K.; O'Keeffe, M.; Yaghi, O. M. Exceptional chemical and thermal stability of zeolitic imidazolate frameworks. Proc. Natl. Acad. Sci. USA 2006, 103, 10186–10191.
Banerjee, R.; Phan, A.; Wang, B.; Knobler, C.; Furukawa, H.; O'Keeffe, M.; Yaghi, O. M. High-throughput synthesis of zeolitic imidazolate frameworks and application to CO2 capture. Science 2008, 319, 939–943.
Wang, H. B.; Lin, Y. S. Synthesis and modification of ZSM-5/silicalite bilayer membrane with improved hydrogen separation performance. J. Membr. Sci. 2012, 396, 128–137.
Wang, M. H.; Yi, S.; Janout, V.; Regen, S. L. A 7 nm thick polymeric membrane with a H2/CO2 selectivity of 200 that reaches the upper bound. Chem. Mater. 2013, 25, 3785–3787.
Zhang, F.; Zou, X. Q.; Gao, X.; Fan, S. J.; Sun, F. X.; Ren, H.; Zhu, G S. Hydrogen selective NH2-MIL-53(Al) MOF membranes with high permeability. Adv. Funct. Mater. 2012, 22, 3583–3590.
Carta, M.; Malpass-Evans, R.; Croad, M.; Rogan, Y.; Jansen, J. C.; Bernardo, P.; Bazzarelli, F.; McKeown, N. B. An efficient polymer molecular sieve for membrane gas separations. Science 2013, 339, 303–307.
Huang, A. S.; Liu, Q.; Wang, N. Y.; Zhu, Y. Q.; Caro, J. Bicontinuous zeolitic imidazolate framework ZIF-8@GO membrane with enhanced hydrogen selectivity. J. Am. Chem. Soc. 2014, 136, 14686–14689.
Zhan, W. W.; Kuang, Q.; Zhou, J. Z.; Kong, X. J.; Xie, Z. X.; Zheng, L. S. Semiconductor@metal-organic framework core–shell heterostructures: A case of ZnO@ZIF-8 nanorods with selective photoelectrochemical response. J. Am. Chem. Soc. 2013, 135, 1926–1933.
Yu, M.; Funke, H. H.; Noble, R. D.; Falconer, J. L. H2 Separation using defect-free, inorganic composite membranes. J. Am. Chem. Soc. 2011, 133, 1748–1750.
Huang, A. S.; Bux, H.; Steinbach, F.; Caro, J. Molecularsieve membrane with hydrogen permselectivity: ZIF-22 in LTA topology prepared with 3-aminopropyltriethoxysilane as covalent linker. Angew. Chem., Int. Ed. 2010, 49, 4958–4961.
Li, Y. S.; Liang, F. Y.; Bux, H.; Yang, W. S.; Caro, J. Zeolitic imidazolate framework ZIF-7 based molecular sieve membrane for hydrogen separation. J. Membr. Sci. 2010, 354, 48–54.
Zhou, S. Y.; Zou, X. Q.; Sun, F. X.; Ren, H.; Liu, J.; Zhang, F.; Zhao, N.; Zhu, G. S. Development of hydrogen-selective CAU-1 MOF membranes for hydrogen purification by "dual-metal-source approach". Int. J. Hydrogen. Energ. 2013, 38, 5338–5347.
Li, W. B.; Zhang, Y. F.; Zhang, C. Y.; Meng, Q.; Xu, Z. H.; Su, P. C.; Li, Q. B.; Shen, C.; Fan, Z.; Qin, L. et al. Transformation of metal-organic frameworks for molecular sieving membranes. Nat. Commun. 2016, 7, 11315.
Robeson, L. M. The upper bound revisited. J. Membr. Sci. 2008, 320, 390–400.
Gin, D. L.; Noble, R. D. Designing the next generation of chemical separation membranes. Science 2011, 332, 674–676.