Article Link
Collect
Submit Manuscript
Show Outline
Outline
Graphical Abstract
Abstract
Keywords
Electronic Supplementary Material
References
Show full outline
Hide outline
Research Article

Growth of ZnO self-converted 2D nanosheet zeolitic imidazolate framework membranes by an ammonia-assisted strategy

Yujia Li1Lu Lin1,2Min Tu3Pei Nian1Ashlee J. Howarth2Omar K. Farha2,4Jieshan Qiu1Xiongfu Zhang1()
State Key Laboratory of Fine ChemicalsSchool of Chemical EngineeringDalian University of TechnologyDalian116024China
International Institute for NanotechnologyDepartment of ChemistryNorthwestern University2145 Sheridan RoadEvanstonIL60208USA
Center for Surface Chemistry and CatalysisKU Leuven-University of LeuvenLeuvenBelgium
Department of Chemistry, Faculty of Science, King Abdulaziz UniversityJeddahSaudi Arabia
Show Author Information

Graphical Abstract

View original image Download original image

Abstract

Shaping crystalline porous materials such as metal organic frameworks (MOFs) and zeolites into two-dimensional (2D) nanosheet forms is highly desirable for developing high-performance molecular sieving membranes. However, conventional exfoliation–deposition is complex and challenging for the large-scale fabrication of nanosheet MOF tubular membranes. Here, for the first time, we report a direct growth technique by ZnO self-conversion and ammonia assistance to fabricate zeolitic imidazolate framework (ZIF) membranes consisting of 2D nanosheets on porous hollow fiber substrates; the membranes are suitable for large-scale industrial gas separation processes. The proposed fabrication process for ZIF nanosheet membranes is based on the localized self-conversion of a pre-deposited thin layer of ZnO in a ligand solution containing ammonium hydroxide as a modulator. The resulting ZIF 2D nanosheet tubular membrane is highly oriented and only 50 nm in thickness. It exhibits excellent molecular sieving performance, with high H2 permeance and selectivity for H2/CO2 separation. This technique shows great promise in MOF nanosheet membrane fabrication for large-scale molecular sieving applications.

Electronic Supplementary Material

Download File(s)
12274_2017_1803_MOESM1_ESM.pdf (1.9 MB)

References

1

Li, H.; Song, Z. N.; Zhang, X. J.; Huang, Y.; Li, S. G.; Mao, Y. T.; Ploehn, H.; Bao, Y.; Yu, M. Ultrathin, molecular-sieving graphene oxide membranes for selective hydrogen separation. Science 2013, 342, 95–98.

2

Wang, S.; Cheng, F.; Zhang, P.; Li, W. C.; Lu, A. H. Fabrication of high-pore volume carbon nanosheets with uniform arrangement of mesopores. Nano Res. 2017, 10, 2106–2116.

3

Tsapatsis, M. 2-Dimensional zeolites. AIChE J. 2014, 60, 2374–2381.

4

Kim, W. G.; Nair, S. Membranes from nanoporous 1D and 2D materials: A review of opportunities, developments, and challenges. Chem. Eng. Sci. 2013, 104, 908–924.

5

Huang, X.; Zheng, B.; Liu, Z. D.; Tan, C. L.; Liu, J. Q.; Chen, B.; Li, H.; Chen, J. Z.; Zhang, X.; Fan, Z. X. et al. Coating two-dimensional nanomaterials with metal–organic frameworks. ACS Nano 2014, 8, 8695–8701.

6

Kagan, C. R.; Fernandez, L. E.; Gogotsi, Y.; Hammond, P. T.; Hersam, M. C.; Nel, A. E.; Penner, R. M.; Willson, C. G.; Weiss, P. S. Nano day: Celebrating the next decade of nanoscience and nanotechnology. ACS Nano 2016, 10, 9093–9103.

7

Kumar, P.; Agrawal, K. V.; Tsapatsis, M.; Mkhoyan, K. A. Quantification of thickness and wrinkling of exfoliated two-dimensional zeolite nanosheets. Nat. Commun. 2015, 6, 7128.

8

Shen, J.; Liu, G. P.; Huang, K.; Chu, Z. Y.; Jin, W. Q.; Xu, N. P. Subnanometer two-dimensional graphene oxide channels for ultrafast gas sieving. ACS Nano 2016, 10, 3398–3409.

9

He, K.; Cao, Z.; Liu, R. R.; Miao, Y.; Ma, H. Y.; Ding, Y. In situ decomposition of metal-organic frameworks into ultrathin nanosheets for the oxygen evolution reaction. Nano Res. 2016, 9, 1856–1865.

10

Meng, J. S.; Niu, C. J.; Xu, L. H.; Li, J. T.; Liu, X.; Wang, X. P.; Wu, Y. Z.; Xu, X. M.; Chen, W. Y.; Li, Q. et al. General oriented formation of carbon nanotubes from metal-organic frameworks. J. Am. Chem. Soc. 2017, 139, 8212–8221.

11

Liu, Y. Y.; Ng, Z. F.; Khan, E. A.; Jeong, H. K.; Ching, C. B.; Lai, Z. P. Synthesis of continuous MOF-5 membranes on porous α-alumina substrates. Micropor. Mesopor. Mater. 2009, 118, 296–301.

12

Liu, X. L.; Wang, C. H.; Wang, B.; Li, K. Novel organicdehydration membranes prepared from zirconium metalorganic frameworks. Adv. Funct. Mater. 2017, 27, 1604311.

13

Venna, S. R.; Carreon, M. A. Highly permeable zeolite imidazolate framework-8 membranes for CO2/CH4 separation. J. Am. Chem. Soc. 2010, 132, 76–78.

14

Li, Y. S.; Liang, F. Y.; Bux, H.; Feldhoff, A.; Yang, W. S.; Caro, J. Molecular sieve membrane: Supported metal-organic framework with high hydrogen selectivity. Angew. Chem., Int. Ed. 2010, 49, 548–551.

15

Liu, Q.; Wang, N. Y.; Caro, J.; Huang, A. S. Bio-inspired polydopamine: A versatile and powerful platform for covalent synthesis of molecular sieve membranes. J. Am. Chem. Soc. 2013, 135, 17679–17682.

16

Zhang, X. F.; Liu, Y. G.; Kong, L. Y.; Liu, H. O.; Qiu, J. S.; Han, W.; Weng, L. -T.; Yeung, K. L.; Zhu, W. D. A simple and scalable method for preparing low-defect ZIF-8 tubular membranes. J. Mater. Chem. A 2013, 1, 10635–10638.

17

Brown, A. J.; Brunelli, N. A.; Eum, K.; Rashidi, F.; Johnson, J. R.; Koros, W. J.; Nair, S. Interfacial microfluidic processing of metal-organic framework hollow fiber membranes. Science 2014, 345, 72–75.

18

Biswal, B. P.; Bhaskar, A.; Banerjee, R.; Kharul, U. K. Selective interfacial synthesis of metal–organic frameworks on a polybenzimidazole hollow fiber membrane for gas separation. Nanoscale 2015, 7, 7291–7298.

19

Cai, G. R.; Zhang, W.; Jiao, L.; Yu, S. H.; Jiang, H. L. Template-directed growth of well-aligned MOF arrays and derived self-supporting electrodes for water splitting. Chem 2017, 2, 791–802.

20

Zhang, X. F.; Liu, Y. G.; Li, S. H.; Kong, L. Y.; Liu, H. O.; Li, Y. S.; Han, W.; Yeung, K. L.; Zhu, W. D.; Yang, W. S. et al. New membrane architecture with high performance: ZIF-8 membrane supported on vertically aligned ZnO nanorods for gas permeation and separation. Chem. Mater. 2014, 26, 1975–1981.

21

Makiura, R.; Motoyanma, S.; Umemura, Y.; Yamanaka, H.; Sakata, O.; Kitagawa, H. Surface nano-architecture of a metal-organic framework. Nat. Mater. 2010, 9, 565–571.

22

Kumar, V.; Zhang, X. Y.; Elyassi, B.; Brewer, D. D.; Gettel, M.; Kumar, S.; Lee, J. A.; Maheshwari, S.; Mittal, A.; Sung, C. Y. et al. Dispersible exfoliated zeolite nanosheets and their application as a selective membrane. Science 2011, 334, 72–75.

23

Falcaro, P.; Okada, K.; Hara, T.; Ikigaki, K.; Tokudome, Y.; Thornton, A. W.; Hill, A. J.; Williams, T.; Doonan, C.; Takahashi, M. Centimetre-scale micropore alignment in oriented polycrystalline metal-organic framework films via heteroepitaxial growth. Nat. Mater. 2017, 16, 342–348.

24

Zhang, H.; Xiao, Q.; Guo, X. H.; Li, N. J.; Kumar, P.; Rangnekar, N.; Jeon, M. Y.; Al-Thabaiti, S.; Narasimharao, K.; Basahel, S. N. et al. Open-pore two-dimensional MFI zeolite nanosheets for the fabrication of hydrocarbon-isomerselective membranes on porous polymer supports. Angew. Chem., Int. Ed. 2016, 55, 7184–7187.

25

Peng, Y.; Li, Y. S.; Ban, Y. J.; Jin, H.; Jiao, W. M.; Liu, X. L.; Yang, W. S. Metal-organic framework nanosheets as building blocks for molecular sieving membranes. Science 2014, 346, 1356–1359.

26

Rodenas, T.; Luz, I.; Prieto, G.; Seoane, B.; Miro, H.; Corma, A.; Kapteijn, F.; Llabrés i Xamena, F. X.; Gascon, J. Metal-organic framework nanosheets in polymer composite materials for gas separation. Nat. Mater. 2015, 14, 48–55.

27

Ockwig, N. W.; Nenoff, T. M. Membranes for hydrogen separation. Chem. Rev. 2007, 107, 4078–4110.

28

Huang, A. S.; Dou, W.; Caro, J. Steam-stable zeolitic imidazolate framework ZIF-90 membrane with hydrogen selectivity through covalent functionalization. J. Am. Chem. Soc. 2010, 132, 15562–15564.

29

Li, J. R.; Sculley, J.; Zhou, H. C. Metal–organic frameworks for separations. Chem. Rev. 2012, 112, 869–932.

30

Yang, Q. F.; Cui, X. B.; Yu, J. H.; Lu, J.; Yu, X. Y.; Zhang, X.; Xu, J. Q.; Hou, Q.; Wang, T. G. A series of metal–organic complexes constructed from in situ generated organic amines. CrystEngComm 2008, 10, 1534–1541.

31

Fairen-Jimenez, D.; Galvelis, R.; Torrisi, A.; Gellan, A. D.; Wharmby, M. T.; Wright, P. A.; Mellot-Draznieks, C.; Düren, T. Flexibility and swing effect on the adsorption of energy-related gases on ZIF-8: Combined experimental and simulation study. Dalton Trans. 2012, 41, 10752–10762.

32

Khaletskaya, K.; Turner, S.; Tn, M.; Wannapaiboon, S.; Schneemann, A.; Meyer, R.; Ludwig, A.; van Tendeloo, G.; Fischer, R. A. Self-directed localization of ZIF-8 thin film formation by conversion of ZnO nanolayers. Adv. Funct. Mater. 2014, 24, 4804–4811.

33

Liu, Y.; Wang, N. Y.; Pan, J. H.; Steinbach, F.; Caro, J. In situ synthesis of MOF membranes on ZnAl-CO3 LDH buffer layer-modified substrates. J. Am. Chem. Soc. 2014, 136, 14353–14356.

34

Li, L. X.; Yao, F. F.; Wang, X. J.; Cheng, Y. B.; Wang, H. T. ZIF-11/polybenzimidazole composite membrane with improved hydrogen separation performance. J. Appl. Polym. Sci. 2014, 131, 41056.

35

Park, K.; Ni, Z.; Cote, A. P.; Choi, J. Y.; Huang, R.; Uribe-Romo, F. J.; Chae, H. K.; O'Keeffe, M.; Yaghi, O. M. Exceptional chemical and thermal stability of zeolitic imidazolate frameworks. Proc. Natl. Acad. Sci. USA 2006, 103, 10186–10191.

36

Banerjee, R.; Phan, A.; Wang, B.; Knobler, C.; Furukawa, H.; O'Keeffe, M.; Yaghi, O. M. High-throughput synthesis of zeolitic imidazolate frameworks and application to CO2 capture. Science 2008, 319, 939–943.

37

Wang, H. B.; Lin, Y. S. Synthesis and modification of ZSM-5/silicalite bilayer membrane with improved hydrogen separation performance. J. Membr. Sci. 2012, 396, 128–137.

38

Wang, M. H.; Yi, S.; Janout, V.; Regen, S. L. A 7 nm thick polymeric membrane with a H2/CO2 selectivity of 200 that reaches the upper bound. Chem. Mater. 2013, 25, 3785–3787.

39

Zhang, F.; Zou, X. Q.; Gao, X.; Fan, S. J.; Sun, F. X.; Ren, H.; Zhu, G S. Hydrogen selective NH2-MIL-53(Al) MOF membranes with high permeability. Adv. Funct. Mater. 2012, 22, 3583–3590.

40

Carta, M.; Malpass-Evans, R.; Croad, M.; Rogan, Y.; Jansen, J. C.; Bernardo, P.; Bazzarelli, F.; McKeown, N. B. An efficient polymer molecular sieve for membrane gas separations. Science 2013, 339, 303–307.

41

Huang, A. S.; Liu, Q.; Wang, N. Y.; Zhu, Y. Q.; Caro, J. Bicontinuous zeolitic imidazolate framework ZIF-8@GO membrane with enhanced hydrogen selectivity. J. Am. Chem. Soc. 2014, 136, 14686–14689.

42

Zhan, W. W.; Kuang, Q.; Zhou, J. Z.; Kong, X. J.; Xie, Z. X.; Zheng, L. S. Semiconductor@metal-organic framework core–shell heterostructures: A case of ZnO@ZIF-8 nanorods with selective photoelectrochemical response. J. Am. Chem. Soc. 2013, 135, 1926–1933.

43

Yu, M.; Funke, H. H.; Noble, R. D.; Falconer, J. L. H2 Separation using defect-free, inorganic composite membranes. J. Am. Chem. Soc. 2011, 133, 1748–1750.

44

Huang, A. S.; Bux, H.; Steinbach, F.; Caro, J. Molecularsieve membrane with hydrogen permselectivity: ZIF-22 in LTA topology prepared with 3-aminopropyltriethoxysilane as covalent linker. Angew. Chem., Int. Ed. 2010, 49, 4958–4961.

45

Li, Y. S.; Liang, F. Y.; Bux, H.; Yang, W. S.; Caro, J. Zeolitic imidazolate framework ZIF-7 based molecular sieve membrane for hydrogen separation. J. Membr. Sci. 2010, 354, 48–54.

46

Zhou, S. Y.; Zou, X. Q.; Sun, F. X.; Ren, H.; Liu, J.; Zhang, F.; Zhao, N.; Zhu, G. S. Development of hydrogen-selective CAU-1 MOF membranes for hydrogen purification by "dual-metal-source approach". Int. J. Hydrogen. Energ. 2013, 38, 5338–5347.

47

Li, W. B.; Zhang, Y. F.; Zhang, C. Y.; Meng, Q.; Xu, Z. H.; Su, P. C.; Li, Q. B.; Shen, C.; Fan, Z.; Qin, L. et al. Transformation of metal-organic frameworks for molecular sieving membranes. Nat. Commun. 2016, 7, 11315.

48

Robeson, L. M. The upper bound revisited. J. Membr. Sci. 2008, 320, 390–400.

49

Gin, D. L.; Noble, R. D. Designing the next generation of chemical separation membranes. Science 2011, 332, 674–676.

Nano Research
Pages 1850-1860
Cite this article:
Li Y, Lin L, Tu M, et al. Growth of ZnO self-converted 2D nanosheet zeolitic imidazolate framework membranes by an ammonia-assisted strategy. Nano Research, 2018, 11(4): 1850-1860. https://doi.org/10.1007/s12274-017-1803-0
Metrics & Citations  
Article History
Copyright
Return