Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
Polyaniline nanofibers (PANI NFs) are introduced to construct a wind-driven triboelectric nanogenerator (TENG) as a new power source for self-powered cathodic protection. PANI NFs serve as a friction layer to generate charges by harvesting wind energy as well as a conducting layer to transfer charges in TENG. A PANI NFs-based TENG exhibits a high output performance with a maximum output voltage of 375 V, short current circuit of 248 μA, and corresponding power of 14.5 mW under a wind speed of 15 m/s. Additionally, a self-powered anticorrosion system is constructed by using a PANI-based TENG as the power source. The immersion experiment and electrochemical measurements demonstrate that carbon steel coupled with the wind-driven TENG is effectively protected with an evident open circuit potential drop and negative shift in the corrosion potential. The smart self-powered device is promising in terms of applications to protect metals from corrosion by utilizing wind energy in ambient conditions.
Li, X. G. ; Zhang, D. W. ; Liu, Z. Y. ; Li, Z. ; Du, C. W. ; Dong, C. F. Materials science: Share corrosion date. Nature 2015, 527, 441-442.
Panossian, Z. ; de Almeida, N. L. ; de Sousa, R. M. F. ; de Souza Pimenta, G. ; Marques, L. B. S. Corrosion of carbon steel pipes and tanks by concentrated sulfuric acid: A review. Corros. Sci. 2012, 58, 1-11.
Varela, F. ; Tan, M. Y. J. ; Forsyth, M. Understanding the effectiveness of cathodic protection under disbonded coatings. Electrochim. Acta 2015, 186, 377-390.
Barbalat, M. ; Lanarde, L. ; Caron, D. ; Meyer, M. ; Vittonato, J. ; Castillon, F. ; Fontaine, S. ; Refait, P. Electrochemical study of the corrosion rate of carbon steel in soil: Evolution with time and determination of residual corrosion rates under cathodic protection. Corros. Sci. 2012, 55, 246-253.
DeGiorgi, V. G. ; Wimmer, S. A. Geometric details and modeling accuracy requirements for shipboard impressed current cathodic protection system modeling. Eng. Anal. Bound. Elem. 2005, 29, 15-28.
Collazo, A. ; Izquierdo, M. ; Nóvoa, X. R. ; Pérez, C. Surface treatment of carbon steel substrates to prevent cathodic delamination. Electrochim. Acta 2007, 52, 7513-7518.
Szabó, S. ; Bakos, I. Impressed current cathodic protection. Corros. Rev. 2006, 24, 39-62.
Wang, S. H. ; Xie, Y. N. ; Niu, S. M. ; Lin, L. ; Wang, Z. L. Freestanding triboelectric-layer-based nanogenerators for harvesting energy from a moving object or human motion in contact and non-contact modes. Adv. Mater. 2014, 26, 2818-2824.
Zhang, H. L. ; Yang, Y. ; Su, Y. J. ; Chen, J. ; Adams, K. ; Lee, S. ; Hu, C. G. ; Wang, Z. L. Triboelectric nanogenerator for harvesting vibration energy in full space and as selfpowered acceleration sensor. Adv. Funct. Mater. 2014, 24, 1401-1407.
Khan, U. ; Kim, S. W. Triboelectric nanogenerators for blue energy harvesting. ACS Nano 2016, 10, 6429-6432.
Yang, W. Q. ; Chen, J. ; Zhu, G. ; Yang, J. ; Bai, P. ; Su, Y. J. ; Jing, Q. S. ; Cao, X. ; Wang, Z. L. Harvesting energy from the natural vibration of human walking. ACS Nano 2013, 7, 11317-11324.
Zhang, L. ; Jin, L. ; Zhang, B. B. ; Deng, W. L. ; Pan, H. ; Tang, J. F. ; Zhu, M. H. ; Yang, W. Q. Multifunctional triboelectric nanogenerator based on porous micro-nickel foam to harvest mechanical energy. Nano Energy 2015, 16, 516-523.
Yang, W. Q. ; Chen, J. ; Jing, Q. S. ; Yang, J. ; Wen, X. N. ; Su, Y. J. ; Zhu, G. ; Bai, P. ; Wang, Z. L. 3D stack integrated triboelectric nanogenerator for harvesting vibration energy. Adv. Funct. Mater. 2014, 24, 4090-4096.
Wang, S. H. ; Mu, X. J. ; Wang, X. ; Gu, A. Y. ; Wang, Z. L. ; Yang, Y. Elasto-aerodynamics-driven triboelectric nanogenerator for scavenging air-flow energy. ACS Nano 2015, 9, 9554-9563.
Quan, Z. C. ; Han, C. B. ; Jiang, T. ; Wang, Z. L. Robust thin films-based triboelectric nanogenerator arrays for harvesting bidirectional wind energy. Adv. Energy Mater. 2016, 6, 1501799.
Liu, J. M. ; Cui, N. Y. ; Gu, L. ; Chen, X. B. ; Bai, S. ; Zheng, Y. B. ; Hu, C. X. ; Qin, Y. A three-dimensional integrated nanogenerator for effectively harvesting sound energy from the environment. Nanoscale 2016, 8, 4938-4944.
Wang, X. F. ; Niu, S. M. ; Yin, Y. J. ; Yi, F. ; You, Z. ; Wang, Z. L. Triboelectric nanogenerator based on fully enclosed rolling spherical structure for harvesting low-frequency water wave energy. Adv. Energy Mater. 2015, 5, 1501467.
Liang, Q. J. ; Yan, X. Q. ; Liao, X. Q. ; Zhang, Y. Integrated multi-unit transparent triboelectric nanogenerator harvesting rain power for driving electronics. Nano Energy 2016, 25, 18-25.
Zhang, L. ; Zhang, B. B. ; Chen, J. ; Jin, L. ; Deng, W. L. ; Tang, J. F. ; Zhang, H. T. ; Pan, H. ; Zhu, M. H. ; Yang, W. Q. et al. Lawn structured triboelectric nanogenerators for scavenging sweeping wind energy on rooftops. Adv. Mater. 2016, 28, 1650-1656.
Wang, Z. L. Triboelectric nanogenerators as new energy technology and self-powered sensors—Principles, problems and perspectives. Faraday Discuss. 2014, 176, 447-458.
Wang, Z. L. ; Chen, J. ; Lin, L. Progress in triboelectric nanogenerators as a new energy technology and self-powered sensors. Energy Environ. Sci. 2015, 8, 2250-2282.
Fan, F. R. ; Tang, W. ; Wang, Z. L. Flexible nanogenerators for energy harvesting and self-powered electronics. Adv. Mater. 2016, 28, 4283-4305.
Zhang, X. L. ; Zheng, Y. B. ; Wang, D. A. ; Rahman, Z. U. ; Zhou, F. Liquid-solid contact triboelectrification and its use in self-powered nanosensor for detecting organics in water. Nano Energy 2016, 30, 321-329.
Yang, Y. ; Zhu, G. ; Zhang, H. L. ; Chen, J. ; Zhong, X. D. ; Lin, Z. H. ; Su, Y. J. ; Bai, P. ; Wen, X. N. ; Wang, Z. L. Triboelectric nanogenerator for harvesting wind energy and as self-powered wind vector sensor system. ACS Nano 2013, 7, 9461-9468.
Jin, L. ; Deng, W. L. ; Su, Y. C. ; Xu, Z. ; Meng, H. ; Wang, B. ; Zhang, H. P. ; Zhang, B. B. ; Zhang, L. ; Xiao, X. B. et al. Self-powered wireless smart sensor based on maglev porous nanogenerator for train monitoring system. Nano Energy 2017, 38, 185-192.
Xi, Y. ; Guo, H. Y. ; Zi, Y. L. ; Li, X. G. ; Wang, J. ; Deng, J. N. ; Li, S. M. ; Hu, C. G. ; Cao, X. ; Wang, Z. L. Multifunctional TENG for blue energy scavenging and self-powered windspeed sensor. Adv. Energy Mater. 2017, 7, 1602397.
Ma, M. Y. ; Liao, Q. L. ; Zhang, G. J. ; Zhang, Z. ; Liang, Q. J. ; Zhang, Y. Self-recovering triboelectric nanogenerator as active multifunctional sensors. Adv. Funct. Mater. 2015, 25, 6489-6494.
Zhang, Y. ; Yan, X. Q. ; Yang, Y. ; Huang, Y. H. ; Liao, Q. L. ; Qi, J. J. Scanning probe study on the piezotronic effect in ZnO nanomaterials and nanodevices. Adv. Mater. 2012, 24, 4647-4655.
Zhang, Q. ; Liang, Q. J. ; Liao, Q. L. ; Yi, F. ; Zheng, X. ; Ma, M. Y. ; Gao, F. F. ; Zhang, Y. Service behavior of multifunctional triboelectric nanogenerators. Adv. Mater. 2017, 29, 1606703.
Wang, S. H. ; Wang, X. ; Wang, Z. L. ; Yang, Y. Efficient scavenging of solar and wind energies in a smart city. ACS Nano 2016, 10, 5696-5700.
Jin, L. ; Chen, J. ; Zhang, B. B. ; Deng, W. L. ; Zhang, L. ; Zhang, H. T. ; Huang, X. ; Zhu, M. H. ; Yang, W. Q. ; Wang, Z. L. Self-powered safety helmet based on hybridized nanogenerator for emergency. ACS Nano 2016, 10, 7874-7881.
Jeon, S. -B. ; Kim, S. ; Park, S. J. ; Seol, M. -L. ; Kim, D. ; Chang, Y. K. ; Choi, Y. -K. Self-powered electro-coagulation system driven by a wind energy harvesting triboelectric nanogenerator for decentralized water treatment. Nano Energy 2016, 28, 288-295.
Zhu, H. R. ; Tang, W. ; Gao, C. Z. ; Han, Y. ; Li, T. ; Cao, X. ; Wang, Z. L. Self-powered metal surface anti-corrosion protection using energy harvested from rain drops and wind. Nano Energy 2015, 14, 193-200.
Feng, Y. G. ; Zheng, Y. B. ; Rahman, Z. U. ; Wang, D. A. ; Zhou, F. ; Liu, W. M. Paper-based triboelectric nanogenerators and their application in self-powered anticorrosion and antifouling. J. Mater. Chem. A 2016, 4, 18022-18030.
Cui, S. W. ; Zheng, Y. B. ; Liang, J. ; Wang, D. A. Conducting polymer PPy nanowire-based triboelectric nanogenerator and its application for self-powered electrochemical cathodic protection. Chem. Sci. 2016, 7, 6477-6483.
Xue, X. Y. ; Fu, Y. M. ; Wang, Q. ; Xing, L. L. ; Zhang, Y. Outputting olfactory bionic electric impulse by PANI/PTFE/PANI sandwich nanostructures and their application as flexible, smelling electronic skin. Adv. Funct. Mater. 2016, 26, 3128-3138.
Zhang, B. B. ; Chen, J. ; Jin, L. ; Deng, W. L. ; Zhang, L. ; Zhang, H. T. ; Zhu, M. H. ; Yang, W. Q. ; Wang, Z. L. Rotating-disk-based hybridized electromagnetic-triboelectric nanogenerator for sustainably powering wireless traffic volume sensors. ACS Nano 2016, 10, 6241-6247.
Chiou, N. R. ; Lu, C. M. ; Guan, J. J. ; Lee, L. J. ; Epstein, A. J. Growth and alignment of polyaniline nanofibres with superhydrophobic, superhydrophilic and other properties. Nat. Nanotechnol. 2007, 2, 354-357.
Diaz, A. F. ; Felix-Navarro, R. M. A semi-quantitative triboelectric series for polymeric materials: The influence of chemical structure and properties. J. Electrostat. 2004, 62, 277-290.
Xie, Y. N. ; Wang, S. H. ; Lin, L. ; Jing, Q. S. ; Lin, Z. H. ; Niu, S. M. ; Wu, Z. Y. ; Wang, Z. L. Rotary triboelectric nanogenerator based on a hybridized mechanism for harvesting wind energy. ACS Nano 2013, 7, 7119-7125.