Article Link
Collect
Submit Manuscript
Show Outline
Outline
Graphical Abstract
Abstract
Keywords
Electronic Supplementary Material
References
Show full outline
Hide outline
Research Article

Semi-transparent polymer solar cells with all-copper nanowire electrodes

Haitao Zhai1,2Yang Li3Liwei Chen3Xiao Wang1,2Liangjing Shi1Ranran Wang1()Jing Sun1()
the State Key Lab of High Performance Ceramics and Superfine MicrostructureShanghai Institute of CeramicsChinese Academy of SciencesShanghai200050China
University of Chinese Academy of SciencesBeijing100049China
Suzhou Institute of Nano-tech and Nano-bionicsChinese Academy of SciencesSuzhou215123China
Show Author Information

Graphical Abstract

View original image Download original image

Abstract

Transparent electrodes based on copper nanowires (Cu NWs) have attracted significant attention owing to their advantages including high optical transmittance, good conductivity, and excellent mechanical flexibility. However, low-cost, high-performance, and environmental friendly solar cells with all-Cu NW electrodes have not been realized until now. Herein, top and bottom transparent electrodes based on Cu NWs with low surface roughness and homogeneous conductivity are fabricated. Then, semi-transparent polymer solar cells (PSCs) with the inverted structure of polyacrylate/Cu NWs/poly(3, 4-ethylenedioxythiophene): poly(styrenesulfonate) (PEDOT: PSS) (PH1000)/Y-TiO2/poly(3-hexylthiophene): [6, 6]-phenyl-C61-butyric acid 3, 4, 5-tris(octyloxy)benzyl/PEDOT: PSS (4083)/Cu NWs/polyimide/polydimethylsiloxane are constructed; these could absorb light from both sides with a power conversion efficiency reaching 1.97% and 1.85%. Furthermore, the PSCs show an average transmittance of 42% in the visible region, which renders them suitable for some specialized applications such as power-generating windows and building-integrated photovoltaics. The indium tin oxide (ITO)- and noble metal-free PSCs could pave new pathways for fabricating cost-effective semi-transparent PSCs.

Electronic Supplementary Material

Download File(s)
12274_2017_1812_MOESM1_ESM.pdf (684.4 KB)

References

1

Tang, C. W. Two-layer organic photovoltaic cell. Appl. Phys. Lett. 1986, 48, 183–185.

2

Granström, M. ; Petritsch, K. ; Arias, A. C. ; Lux, A. ; Andersson, M. R. ; Friend, R. H. Laminated fabrication of polymeric photovoltaic diodes. Nature 1998, 395, 257–260.

3

He, Z. C. ; Zhong, C. M. ; Su, S. J. ; Xu, M. ; Wu, H. B. ; Cao, Y. Enhanced power-conversion efficiency in polymer solar cells using an inverted device structure. Nat. Photonics 2012, 6, 591–595.

4

Kim, J. ; Hong, Z. R. ; Li, G. ; Song, T. B. ; Chey, J. ; Lee, Y. S. ; You, J. B. ; Chen, C. C. ; Sadana, D. K. ; Yang, Y. 10.5% efficient polymer and amorphous silicon hybrid tandem photovoltaic cell. Nat. Commun. 2015, 6, 6391.

5

Chen, J. D. ; Cui, C. H. ; Li, Y. Q. ; Zhou, L. ; Ou, Q. D. ; Li, C. ; Li, Y. F. ; Tang, J. X. Single-junction polymer solar cells exceeding 10% power conversion efficiency. Adv. Mater. 2015, 27, 1035–1041.

6

Kaltenbrunner, M. ; White, M. S. ; Glowacki, E. D. ; Sekitani, T. ; Someya, T. ; Sariciftci, N. S. ; Bauer, S. Ultrathin and lightweight organic solar cells with high flexibility. Nat. Commun. 2012, 3, 770.

7

You, J. B. ; Dou, L. T. ; Yoshimura, K. ; Kato, T. ; Ohya, K. ; Moriarty, T. ; Emery, K. ; Chen, C. C. ; Gao, J. ; Li, G. et al. A polymer tandem solar cell with 10.6% power conversion efficiency. Nat. Commun. 2013, 4, 1446.

8

Liu, Y. H. ; Zhao, J. B. ; Li, Z. K. ; Mu, C. ; Ma, W. ; Hu, H. W. ; Jiang, K. ; Lin, H. R. ; Ade, H. ; Yan, H. Aggregation and morphology control enables multiple cases of high-efficiency polymer solar cells. Nat. Commun. 2014, 5, 5293.

9

Angmo, D. ; Andersen, T. R. ; Bentzen, J. J. ; Helgesen, M. ; Søndergaard, R. R. ; Jørgensen, M. ; Carlé, J. E. ; Bundgaard, E. ; Krebs, F. C. Roll-to-roll printed silver nanowire semitransparent electrodes for fully ambient solution-processed tandem polymer solar cells. Adv. Funct. Mater. 2015, 25, 4539–4547.

10

Wu, J. ; Que, X. L. ; Hu, Q. ; Luo, D. Y. ; Liu, T. H. ; Liu, F. ; Russell, T. P. ; Zhu, R. ; Gong, Q. H. Organic solar cells: Multi-length scaled silver nanowire grid for application in efficient organic solar cells. Adv. Funct. Mater. 2016, 26, 4806.

11

Kim, Y. ; Ryu, T. I. ; Ok, K. H. ; Kwak, M. G. ; Park, S. ; Park, N. G. ; Han, C. J. ; Kim, B. S. ; Ko, M. J. ; Son, H. J. et al. Inverted layer-by-layer fabrication of an ultraflexible and transparent Ag nanowire/conductive polymer composite electrode for use in high-performance organic solar cells. Adv. Funct. Mater. 2015, 25, 4743.

12

Stewart, I. E. ; Rathmell, A. R. ; Yan, L. ; Ye, S. R. ; Flowers, P. F. ; You, W. ; Wiley, B. J. Solution-processed copper-nickel nanowire anodes for organic solar cells. Nanoscale 2014, 6, 5980–5988.

13

Sachse, C. ; Weiß, N. ; Gaponik, N. ; Müller-Meskamp, L. ; Eychmüller, A. ; Leo, K. ITO-free, small-molecule organic solar cells on spray-coated copper-nanowire-based transparent electrodes. Adv. Energy Mater. 2014, 4, 1300737.

14

Lee, J. Y. ; Connor, S. T. ; Cui, Y. ; Peumans, P. Semitransparent organic photovoltaic cells with laminated top electrode. Nano Lett. 2010, 10, 1276–1279.

15

Krantz, J. ; Stubhan, T. ; Richter, M. ; Spallek, S. ; Litzov, I. ; Matt, G. J. ; Spiecker, E. ; Brabec, C. J. Spray-coated silver nanowires as top electrode layer in semitransparent P3HT: PCBM-based organic solar cell devices. Adv. Funct. Mater. 2013, 23, 1711–1717.

16

Lu, H. F. ; Zhang, D. ; Ren, X. G. ; Liu, J. ; Choy, W. C. H. Selective growth and integration of silver nanoparticles on silver nanowires at room conditions for transparent nanonetwork electrode. ACS Nano 2014, 8, 10980–10987.

17

Song, M. ; You, D. S. ; Lim, K. ; Park, S. ; Jung, S. ; Kim, C. S. ; Kim, D. H. ; Kim, D. G. ; Kim, J. K. ; Park, J. et al. Highly efficient and bendable organic solar cells with solutionprocessed silver nanowire electrodes. Adv. Funct. Mater. 2013, 23, 4177–4184.

18

Chen, J. Y. ; Zhou, W. X. ; Chen, J. ; Fan, Y. ; Zhang, Z. Q. ; Huang, Z. D. ; Feng, X. M. ; Mi, B. X. ; Ma, Y. W. ; Huang, W. Solution-processed copper nanowire flexible transparent electrodes with PEDOT: PSS as binder, protector and oxidelayer scavenger for polymer solar cells. Nano Res. 2015, 8, 1017–1025.

19

Zhang, D. Q. ; Wang, R. R. ; Wen, M. C. ; Weng, D. ; Cui, X. ; Sun, J. ; Li, H. X. ; Lu, Y. F. Synthesis of ultralong copper nanowires for high-performance transparent electrodes. J. Am. Chem. Soc. 2012, 134, 14283–14286.

20

Han, S. ; Hong, S. ; Ham, J. ; Yeo, J. ; Lee, J. ; Kang, B. ; Lee, P. ; Kwon, J. ; Lee, S. S. ; Yang, M. Y. et al. Flexible electronics: Fast plasmonic laser nanowelding for a cu-nanowire percolation network for flexible transparent conductors and stretchable electronics. Adv. Mater. 2014, 26, 5888.

21

Zhong, Z. Y. ; Lee, H. ; Kang, D. ; Kwon, S. ; Choi, Y. M. ; Kim, I. ; Kim, K. Y. ; Lee, Y. ; Woo, K. ; Moon, J. Continuous patterning of copper nanowire-based transparent conducting electrodes for use in flexible electronic applications. ACS Nano 2016, 10, 7847–7854.

22

Mayousse, C. ; Celle, C. ; Carella, A. ; Simonato, J. P. Synthesis and purification of long copper nanowires. Application to high performance flexible transparent electrodes with and without PEDOT: PSS. Nano Res. 2014, 7, 315–324.

23

Wang, X. ; Wang, R. R. ; Zhai, H. T. ; Shen, X. ; Wang, T. ; Shi, L. J. ; Yu, R. C. ; Sun, J. Room-temperature surface modification of cu nanowires and their applications in transparent electrodes, SERS-based sensors, and organic solar cells. ACS Appl. Mater. Interfaces 2016, 8, 28831–28837.

24

Chen, K. S. ; Salinas, J. F. ; Yip, H. L. ; Huo, L. J. ; Hou, J. H. ; Jen, A. K. Y. Semi-transparent polymer solar cells with 6% PCE, 25% average visible transmittance and a color rendering index close to 100 for power generating window applications. Energy Environ. Sci. 2012, 5, 9551–9557.

25

Zhai, H. T. ; Wang, R. R. ; Wang, W. Q. ; Wang, X. ; Cheng, Y. ; Shi, L. J. ; Liu, Y. Q. ; Sun, J. Novel fabrication of copper nanowire/cuprous oxidebased semiconductor-liquid junction solar cells. Nano Res. 2015, 8, 3205–3215.

26

Cheng, Y. ; Wang, R. R. ; Sun, J. ; Gao, L. A stretchable and highly sensitive graphene-based fiber for sensing tensile strain, bending, and torsion. Adv. Mater. 2015, 27, 7365–7371.

27

Wang, R. R. ; Zhai, H. T. ; Wang, T. ; Wang, X. ; Cheng, Y. ; Shi, L. J. ; Sun, J. Plasma-induced nanowelding of a copper nanowire network and its application in transparent electrodes and stretchable conductors. Nano Res. 2016, 9, 2138–2148.

28

Wang, S. L. ; Cheng, Y. ; Wang, R. R. ; Sun, J. ; Gao, L. Highly thermal conductive copper nanowire composites with ultralow loading: Toward applications as thermal interface materials. ACS Appl. Mater. Interfaces 2014, 6, 6481–6486.

29

Spechler, J. A. ; Koh, T. W. ; Herb, J. T. ; Rand, B. P. ; Arnold, C. B. A transparent, smooth, thermally robust, conductive polyimide for flexible electronics. Adv. Funct. Mater. 2015, 25, 7428–7434.

30

Zhou, H. P. ; Chen, Q. ; Li, G. ; Luo, S. ; Song, T. B. ; Duan, H. S. ; Hong, Z. R. ; You, J. B. ; Liu, Y. S. ; Yang, Y. Interface engineering of highly efficient perovskite solar cells. Science 2014, 345, 542–546.

31

Mao, L. ; Chen, Q. ; Li, Y. W. ; Li, Y. ; Cai, J. H. ; Su, W. M. ; Bai, S. ; Jin, Y. Z. ; Ma, C. Q. ; Cui, Z. et al. Flexible silver grid/PEDOT: PSS hybrid electrodes for large area inverted polymer solar cells. Nano Energy 2014, 10, 259–267.

32

Wang, Y. ; Tong, S. W. ; Xu, X. F. ; Öezyilmaz, B. ; Loh, K. P. Interface engineering of layer-by-layer stacked graphene anodes for high-performance organic solar cells. Adv. Mater. 2011, 23, 1514–1518.

33

Park, H. ; Brown, P. R. ; Buloyić, V. ; Kong, J. Graphene as transparent conducting electrodes in organic photovoltaics: studies in graphene morphology, hole transporting layers, and counter electrodes. Nano Lett. 2012, 12, 133–140.

34

Wang, J. ; Polleux, J. ; Lim, J. ; Dunn, B. Pseudocapacitive contributions to electrochemical energy storage in TiO2 (anatase) nanoparticles. J. Phys. Chem. C 2007, 111, 14925–14931.

35

Liu, Z. K. ; You, P. ; Liu, S. H. ; Yan, F. Neutral-color semitransparent organic solar cells with all-graphene electrodes. ACS Nano 2015, 9, 12026–12034.

36

Liu, Z. K. ; Li, J. H. ; Sun, Z. H. ; Tai, G. A. ; Lau, S. P. ; Yan, F. The application of highly doped single-layer graphene as the top electrodes of semitransparent organic solar cells. ACS Nano 2012, 6, 810–818.

37

Park, H. ; Chang, S. ; Smith, M. ; Gradečak, S. ; Kong, J. Interface engineering of graphene for universal applications as both anode and cathode in organic photovoltaics. Sci. Rep. 2013, 3, 1581.

Nano Research
Pages 1956-1966
Cite this article:
Zhai H, Li Y, Chen L, et al. Semi-transparent polymer solar cells with all-copper nanowire electrodes. Nano Research, 2018, 11(4): 1956-1966. https://doi.org/10.1007/s12274-017-1812-z
Metrics & Citations  
Article History
Copyright
Return