AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Oxygen-assisted preparation of mechanoluminescent ZnS: Mn for dynamic pressure mapping

Xiandi Wang1,2Rui Ling1,3Yufei Zhang1,4Miaoling Que1,2Yiyao Peng1,2Caofeng Pan1,2( )
Beijing Institute of Nanoenergy and NanosystemsChinese Academy of SciencesBeijing100083China
CAS Center for Excellence in NanoscienceNational Center for Nanoscience and Technology (NCNST)Beijing100190China
School of Materials Science and EngineeringUniversity of Science and Technology BeijingBeijing100083China
Key Laboratory of Aerospace Materials and Performance (Ministry of Education)School of Materials Science and EngineeringBeihang UniversityBeijing100191China
Show Author Information

Graphical Abstract

Abstract

Mechanoluminescent materials that convert mechanical stimuli to light emission have attracted extensive attention for potential applications in human-machine interactions. Here, we report a simple and available novel approach for the oxygen-assisted preparation of ZnS: Mn particles by solid-state reaction at atmospheric pressure without the formation of the corresponding oxides. The existence of O2 has a positive impact on the formation of S vacancies in wurtzite-phase ZnS, leading to the introduction of Mn2+ ion luminescent centers and shallow donor levels, which can improve the electron-hole recombination rate. The O2 ratio and Mn2+ ion doping concentration have significant effects on the luminous efficiency, which is optimal at 1%–20% and 1 at.%–2 at.% respectively. In addition, a device based on the piezo-photonic effect with excellent pressure sensitivity of 0.032 MPa-1 was fabricated, which can map the two-dimensional pressure distribution ranging from 2.2 to 40.6 MPa in situ. This device can be applied to real-time pressure mapping, smart sensor networks, high-level security systems, human-machine interfaces, and artificial skins.

References

1

Camara, C. G. ; Escobar, J. V. ; Hird, J. R. ; Putterman, S. J. Correlation between nanosecond X-ray flashes and stick-slip friction in peeling tape. Nature 2008, 455, 1089–1092.

2

Eddingsaas, N. C. ; Suslick, K. S. Mechanoluminescence: Light from sonication of crystal slurries. Nature 2006, 444, 163.

3

Jeong, S. M. ; Song, S. ; Lee, S. K. ; Ha, N. Y. Color manipulation of mechanoluminescence from stress-activated composite films. Adv. Mater. 2013, 25, 6194–6200.

4

Jeong, S. M. ; Song, S. ; Kim, H. Simultaneous dual-channel blue/green emission from electro-mechanically powered elastomeric zinc sulphide composite. Nano Energy 2016, 21, 154–161.

5

Jeong, S. M. ; Song, S. ; Lee, S. K. ; Choi, B. Mechanically driven light-generator with high durability. Appl. Phys. Lett. 2013, 102, 051110.

6

Li, F. ; Wang, X. D. ; Xia, Z. G. ; Pan, C. F. ; Liu, Q. L. Photoluminescence tuning in stretchable pdms film grafted doped core/multishell quantum dots for anticounterfeiting. Adv. Funct. Mater. 2017, 27, 1700051.

7

Wang, X. D. ; Que, M. L. ; Chen, M. X. ; Han, X. ; Li, X. Y. ; Pan, C. F. ; Wang, Z. L. Full dynamic-range pressure sensor matrix based on optical and electrical dual-mode sensing. Adv. Mater. 2017, 29, 1605817.

8

Wang, X. D. ; Zhang, H. L. ; Yu, R. M. ; Dong, L. ; Peng, D. F. ; Zhang, A. H. ; Zhang, Y. ; Liu, H. ; Pan, C. F. ; Wang, Z. L. Dynamic pressure mapping of personalized handwriting by a flexible sensor matrix based on the mechanoluminescence process. Adv. Mater. 2015, 27, 2324–2331.

9

Wang, X. D. ; Dong, L. ; Zhang, H. L. ; Yu, R. M. ; Pan, C. F. ; Wang, Z. L. Recent progress in electronic skin. Adv. Sci. 2015, 2, 1500169.

10

Chandra, B. P. ; Xu, C. N. ; Yamada, H. ; Zheng, X. G. Luminescence induced by elastic deformation of ZnS: Mn nanoparticles. J. Lumin. 2010, 130, 442–450.

11

Peng, D. F. ; Chen, B. ; Wang, F. Recent advances in doped mechanoluminescent phosphors. ChemPlusChem 2015, 80, 1209–1215.

12

Tu, D. ; Xu, C. N. ; Yoshida, A. ; Fujihala, M. ; Hirotsu, J. ; Zheng, X. G. LiNbO3: Pr3+: A multipiezo material with simultaneous piezoelectricity and sensitive piezoluminescence. Adv. Mater. 2017, 29, 1606914.

13

Wang, X. ; Xu, C. N. ; Yamada, H. ; Nishikubo, K. ; Zheng, X. G. Electro-mechano-optical conversions in Pr3+-doped BaTiO3-CaTiO3 ceramics. Adv. Mater. 2005, 17, 1254–1258.

14

Cho, S. ; Kang, S. ; Pandya, A. ; Shanker, R. ; Khan, Z. ; Lee, Y. ; Park, J. ; Craig, S. L. ; Ko, H. Large-area cross-aligned silver nanowire electrodes for flexible, transparent, and force-sensitive mechanochromic touch screens. Acs Nano 2017, 11, 4346–4357.

15

Kim, G. ; Cho, S. ; Chang, K. ; Kim, W. S. ; Kang, H. ; Ryu, S. P. ; Myoung, J. ; Park, J. ; Park, C. ; Shim, W. Spatially pressure-mapped thermochromic interactive sensor. Adv. Mater. 2017, 29, 1606120.

16

Hirai, Y. ; Nakanishi, T. ; Kitagawa, Y. ; Fushimi, K. ; Seki, T. ; Ito, H. ; Hasegawa, Y. Triboluminescence of lanthanide coordination polymers with face-to-face arranged substituents. Angew. Chem. 2017, 129, 7277–7281.

17

Gan, J. Y. ; Kang, M. G. ; Meeker, M. A. ; Khodaparast, G. A. ; Bodnar, R. J. ; Mahaney, J. E. ; Maurya, D. ; Priya, S. Enhanced piezoluminescence in non-stoichiometric Zns: Cu microparticles based light emitting elastomers. J. Mater. Chem. C 2017, 5, 5387–5394.

18

Li, L. J. ; Wong, K. L. ; Li, P. F. ; Peng, M. Y. Mechanoluminescence properties of Mn2+-doped BaZnOS phosphor. J. Mater. Chem. C 2016, 4, 8166–8170.

19

Yang, Y. B. ; Yang, X. D. ; Tan, Y. N. ; Yuan, Q. Recent progress in flexible and wearable bio-electronics based on nanomaterials. Nano Res. 2017, 10, 1560–1583.

20

Xu, C. N. ; Watanabe, T. ; Akiyama, M. ; Zheng, X. G. Direct view of stress distribution in solid by mechanoluminescence. Appl. Phys. Lett. 1999, 74, 2414–2416.

21

Fang, H. J. ; Wang, X. D. ; Li, Q. ; Peng, D. F. ; Yan, Q. F. ; Pan, C. F. A stretchable nanogenerator with electric/light dual-mode energy conversion. Adv. Energy Mater. 2016, 6, 1600829.

22

Xu, C. N. ; Yamada, H. ; Wang, X. S. ; Zheng, X. G. Strong elasticoluminescence from monoclinic-structure SrAl2O4. Appl. Phys. Lett. 2004, 84, 3040–3042.

23

Wang, Z. L. Towards self-powered nanosystems: From nanogenerators to nanopiezotronics. Adv. Funct. Mater. 2008, 18, 3553–3567.

24

Wang, Z. L. Piezopotential gated nanowire devices: Piezotronics and piezo-phototronics. Nano Today 2010, 5, 540–552.

25

Yu, R. M. ; Dong, L. ; Pan, C. F. ; Niu, S. M. ; Liu, H. F. ; Liu, W. ; Chua, S. ; Chi, D. Z. ; Wang, Z. L. Piezotronic effect on the transport properties of GaN nanobelts for active flexible electronics. Adv. Mater. 2012, 24, 3532–3537.

26

Pan, C. F. ; Dong, L. ; Zhu, G. ; Niu, S. M. ; Yu, R. M. ; Yang, Q. ; Liu, Y. ; Wang, Z. L. High-resolution electroluminescent imaging of pressure distribution using a piezoelectric nanowire LED array. Nat. Photonics 2013, 7, 752–758.

27

Wu, W. Z. ; Wen, X. N. ; Wang, Z. L. Taxel-addressable matrix of vertical-nanowire piezotronic transistors for active and adaptive tactile imaging. Science 2013, 340, 952–957.

28

Chen, L. ; Wong, M. C. ; Bai, G. X. ; Jie, W. J. ; Hao, J. H. White and green light emissions of flexible polymer composites under electric field and multiple strains. Nano Energy 2015, 14, 372–381.

29

Huang, L. B. ; Xu, W. ; Bai, G. X. ; Wong, M. C. ; Yang, Z. B. ; Hao, J. H. Wind energy and blue energy harvesting based on magnetic-assisted noncontact triboelectric nanogenerator. Nano Energy 2016, 30, 36–42.

30

Hu, G. F. ; Guo, W. X. ; Yu, R. M. ; Yang, X. N. ; Zhou, R. R. ; Pan, C. F. ; Wang, Z. L. Enhanced performances of flexible zno/perovskite solar cells by piezo-phototronic effect. Nano Energy 2016, 23, 27–33.

31

Wang, C. F. ; Bao, R. R. ; Zhao, K. ; Zhang, T. P. ; Dong, L. ; Pan, C. F. Enhanced emission intensity of vertical aligned flexible ZnO nanowire/p-polymer hybridized led array by piezo-phototronic effect. Nano Energy 2015, 14, 364–371.

32

Wen, X. N. ; Wu, W. Z. ; Pan, C. F. ; Hu, Y. F. ; Yang, Q. ; Wang, Z. L. Development and progress in piezotronics. Nano Energy 2015, 14, 276–295.

33

Hu, G. F. ; Zhou, R. R. ; Yu, R. M. ; Dong, L. ; Pan, C. F. ; Wang, Z. L. Piezotronic effect enhanced schottky-contact ZnO micro/nanowire humidity sensors. Nano Res. 2014, 7, 1083–1091.

34

Qiu, J. C. ; Zhao, K. ; Li, L. L. ; Yu, X. ; Guo, W. B. ; Wang, S. ; Zhang, X. D. ; Pan, C. F. ; Wang, Z. L. ; Liu, H. A titanium dioxide nanorod array as a high-affinity nano-bio interface of a microfluidic device for efficient capture of circulating tumor cells. Nano Res. 2017, 10, 776–784.

35

Zhang, T. P. ; Liang, R. R. ; Dong, L. ; Wang, J. ; Xu, J. ; Pan, C. F. Wavelength-tunable infrared light emitting diode based on ordered ZnO nanowire/Si1-xGex alloy heterojunction. Nano Res. 2015, 8, 2676–2685.

36

Wang, X. D. ; Zhang, H. L. ; Dong, L. ; Han, X. ; Du, W. M. ; Zhai, J. Y. ; Pan, C. F. ; Wang, Z. L. Self-powered high-resolution and pressure-sensitive triboelectric sensor matrix for real-time tactile mapping. Adv. Mater. 2016, 28, 2896–2903.

37

Xu, C. N. ; Watanabe, T. ; Akiyama, M. ; Zheng, X. G. Artificial skin to sense mechanical stress by visible light emission. Appl. Phys. Lett. 1999, 74, 1236–1238.

38

Kollman, P. Free energy calculations: Applications to chemical and biochemical phenomena. Chem. Rev. 1993, 93, 2395–2417.

39

Chen, Y. ; Zhang, Y. ; Karnaushenko, D. ; Chen, L. ; Hao, J. H. ; Ding, F. ; Schmidt, O. G. Addressable and color-tunable piezophotonic light-emitting stripes. Adv. Mater. 2017, 29, 1605165.

40

Wong, M. C. ; Chen, L. ; Tsang, M. K. ; Zhang, Y. ; Hao, J. H. Magnetic-induced luminescence from flexible composite laminates by coupling magnetic field to piezophotonic effect. Adv. Mater. 2015, 27, 4488–4495.

41

Zhang, Y. ; Gao, G. Y. ; Chan, H. L. W. ; Dai, J. Y. ; Wang, Y. ; Hao, J. H. Piezo-phototronic effect-induced dual-mode light and ultrasound emissions from ZnS: Mn/PMN-Pt thin-film structures. Adv. Mater. 2012, 24, 1729–1735.

Nano Research
Pages 1967-1976
Cite this article:
Wang X, Ling R, Zhang Y, et al. Oxygen-assisted preparation of mechanoluminescent ZnS: Mn for dynamic pressure mapping. Nano Research, 2018, 11(4): 1967-1976. https://doi.org/10.1007/s12274-017-1813-y

710

Views

51

Crossref

N/A

Web of Science

48

Scopus

2

CSCD

Altmetrics

Received: 15 June 2017
Revised: 11 August 2017
Accepted: 20 August 2017
Published: 19 March 2018
© Tsinghua University Press and Springer-Verlag GmbH Germany 2017
Return