Graphical Abstract

Development of earth-abundant electrocatalysts, particularly for high-efficiency hydrogen evolution reaction (HER) under benign conditions, is highly desired, but still remains a serious challenge. Herein, we report a high-performance amorphous CoMoS4 nanosheet array on carbon cloth (CoMoS4 NS/CC), prepared by hydrothermal treatment of a Co(OH)F nanosheet array on a carbon cloth (Co(OH)F NS/CC) in (NH4)2MoS4 solution. As a three-dimensional HER electrode, CoMoS4 NS/CC exhibits remarkable activity in 1.0 M phosphate buffer saline (pH 7), only requiring an overpotential of 183 mV to drive a geometrical current density of 10 mA·cm–2. This overpotential is 140 mV lower than that for Co(OH)F NS/CC. Notably, this electrode also shows outstanding electrochemical durability and nearly 100% Faradaic efficiency. Density functional theory calculations suggest that CoMoS4 has a more favorable hydrogen adsorption free energy than Co(OH)F.
Tang, C.; Cheng, N. Y.; Pu, Z. H.; Xing, W.; Sun, X. P. NiSe nanowire film supported on nickel foam: An efficient and stable 3D bifunctional electrode for full water splitting. Angew. Chem., Int. Ed. 2015, 54, 9351-9355.
Lewis, N. S.; Nocera, D. G. Powering the planet: Chemical challenges in solar energy utilization. Proc. Natl. Acad. Sci. USA 2006, 103, 15729-15735.
Walter, M. G.; Warren, E. L.; McKone, J. R.; Boettcher, S. W.; Mi, Q.; Santori, E. A.; Lewis, N. S. Solar water splitting cells. Chem. Rev. 2010, 110, 6446-6473.
Wang, J. H.; Cui, W.; Liu, Q.; Xing, Z. C.; Asiri, A. M.; Sun, X. P. Recent progress in cobalt-based heterogeneous catalysts for electrochemical water splitting. Adv. Mater. 2016, 28, 215-230.
Zou, X. X.; Zhang, Y. Noble metal-free hydrogen evolution catalysts for water splitting. Chem. Soc. Rev. 2015, 44, 5148-5180.
Le Goff, A.; Artero, V.; Jousselme, B.; Tran, P. D.; Guillet, N.; Métayé, R.; Fihri, A.; Palacin, S.; Fontecave, M. From hydrogenases to noble metal-free catalytic nanomaterials for H2 production and uptake. Science 2009, 326, 1384-1387.
Yang, N.; Tang, C.; Wang, K. Y.; Du, G.; Asiri, AM.; Sun, X. P. Iron-doped nickel disulfide nanoarray: A highly efficient and stable electrocatalyst for water splitting. Nano Res. 2016, 9, 3346-3354.
Pu, Z. H.; Luo, Y. L.; Asiri, A. M.; Sun, X. P. Efficient electrochemical water splitting catalyzed by electrodeposited nickel diselenide nanoparticles based film. ACS Appl. Mater. Interfaces 2016, 8, 4718-4723.
Tian, J. Q.; Liu, Q.; Asiri, A. M.; Sun, X. P. Self-supported nanoporous cobalt phosphide nanowire arrays: An efficient 3D hydrogen-evolving cathode over the wide range of pH 0-14. J. Am. Chem. Soc. 2014, 136, 7587-7590.
Tang, C.; Gan, L. F.; Zhang, R.; Lu, W. B.; Jiang, X. E.; Asiri, A. M.; Sun, X. P.; Wang, J.; Chen, L. Ternary FexCo1-xP nanowire array as a robust hydrogen evolution reaction electrocatalyst with Pt-like activity: Experimental and theoretical insight. Nano Lett. 2016, 16, 6617-6621.
Losse, S.; Vos, J. G.; Rau, S. Catalytic hydrogen production at cobalt centres. Coord. Chem. Rev. 2010, 254, 2492-2504.
Liu, T. T.; Ma, X.; Liu, D. N.; Hao, S.; Du, G.; Ma, Y. J.; Asiri, A. M.; Sun, X. P.; Chen, L. Mn doping of CoP nanosheets array: An efficient electrocatalyst for hydrogen evolution reaction with enhanced activity at all pH values. ACS Catal. 2017, 7, 98-102.
Li, K. D.; Zhang, J. F.; Wu, R.; Yu, Y. F.; Zhang, B. Anchoring CoO domains on CoSe2 nanobelts as bifunctional electrocatalysts for overall water splitting in neutral media. Adv. Sci. 2016, 3, 1500426.
Sun, Y. J.; Liu, C.; Grauer, D. C.; Yano, J.; Long, J. R.; Yang, P. D.; Chang, C. J. Electrodeposited cobalt-sulfide catalyst for electrochemical and photoelectrochemical hydrogen generation from water. J. Am. Chem. Soc. 2013, 135, 17699-17702.
Merki, D.; Fierro, S.; Vrubel, H.; Hu, X. Amorphous molybdenum sulfide films as catalysts for electrochemical hydrogen production in water. Chem. Sci. 2011, 2, 1262-1267.
Morales-Guio, C. G.; Hu, X. Amorphous molybdenum sulfides as hydrogen evolution catalysts. Acc. Chem. Res. 2014, 47, 2671-2681.
Merki, D.; Vrubel, H.; Rovelli, L.; Fierro, S.; Hu, X. Fe, Co, and Ni ions promote the catalytic activity of amorphous molybdenum sulfide films for hydrogen evolution. Chem. Sci. 2012, 3, 2515-2525.
Tian, J. Q.; Liu, Q.; Cheng, N. Y.; Asiri, A. M.; Sun, X. P. Self-supported Cu3P nanowire arrays as an integrated high-performance three-dimensional cathode for generating hydrogen from water. Angew. Chem., Int. Ed. 2014, 53, 9577-9581.
Jiang, P.; Liu, Q.; Liang, Y. H.; Tian, J. Q.; Asiri, A. M.; Sun, X. A cost-Effective 3D hydrogen evolution cathode with high catalytic activity: FeP nanowire array as the active phase. Angew. Chem., Int. Ed. 2014, 53, 12855-12859.
Xie, L. S.; Zhang, R.; Cui, L.; Liu, D. N.; Hao, S.; Ma, Y. J.; Du, G.; Asiri, A. M.; Sun, X. P. High-performance electrolytic oxygen evolution in neutral media catalyzed by a cobalt phosphate nanoarray. Angew. Chem., Int. Ed. 2017, 56, 1064-1068.
Ren, X.; Ge, R. X.; Zhang, Y.; Liu, D. N.; Wu, D.; Sun, X.; Du B.; Wei, Q. Cobalt-borate nanowire array as a high-performance catalyst for oxygen evolution reaction in near-neutral media. J. Mater. Chem. A 2017, 5, 7291-7294.
Ji, X. Q.; Cui, L.; Liu, D. N.; Hao, S.; Liu, J. Q.; Qu, F. L.; Ma, Y. J.; Du, G.; Asiri, A. M.; Sun, X. P. A nickel-borate nanoarray: A highly active 3D oxygen-evolving catalyst electrode operating in near-neutral water. Chem. Commun. 2017, 53, 3070-3073.
Ma, M.; Qu, F. L.; Ji, X. Q.; Liu, D. N.; Hao, S.; Du, G.; Asiri, A. M.; Yao, Y. D.; Chen, L.; Sun, X. P. Bimetallic nickel-substituted cobalt-borate nanowire array: An earth-abundant water oxidation electrocatalyst with superior activity and durability at near neutral pH. Small 2017, 13, 1700394.
Ge, R. X.; Ren, X.; Qu, F. L.; Liu, D. N.; Ma, M.; Hao, S.; Du, G.; Asiri, A. M.; Chen, L.; Sun, X. P. Three-dimensional nickel-borate nanosheets array for efficient oxygen evolution at near-neutral pH. Chem. -Eur. J. 2017, 23, 6959-6963.
Zhu, G. L.; Ge, R. X.; Qu, F. L.; Du, G.; Asiri, A. M.; Yao, Y. D.; Sun, X. P. In situ surface derivation of an Fe-Co-Bi layer on an Fe-doped Co3O4 nanoarray for eficient water oxidation electrocatalysis under near-neutral conditions. J. Mater. Chem. A 2017, 5, 6388-6392.
Zhang, R.; Tang, C.; Kong, R. M.; Du, G.; Asiri, A. M.; Chen, L.; Sun, X. P. Al-doped CoP nanoarray: A durable water-splitting electrocatalyst with superhigh activity. Nanoscale 2017, 9, 4793-4800.
Sun, X.; Guo, Y. Q.; Wu, C. Z.; Xie, Y. The hydric effect in inorganic nanomaterials for nanoelectronics and energy applications. Adv. Mater. 2015, 27, 3850-3867.
Bi, W. T.; Hu, Z. P.; Li, X. G.; Wu, C. Z.; Wu, J. C.; Wu, Y. B.; Xie, Y. Metallic mesocrystal nanosheets of vanadium nitride for high-performance all-solid-state pseudocapacitors. Nano Res. 2015, 8, 193-200.
Xu, R.; Wu, R.; Shi, Y. M.; Zhang, J. F.; Zhang, B. Ni3Se2 nanoforest/Ni foam as a hydrophilic, metallic, and self-supported bifunctional electrocatalyst for both H2 and O2 generations. Nano Energy 2016, 24, 103-110.
Shi, Y. M.; Zhang, B. Recent advances in transition metal phosphide nanomaterials: Synthesis and applications in hydrogen evolution reaction. Chem. Soc. Rev. 2016, 45, 1529-1541.
Wu, R.; Zhang, J. F.; Shi, Y. M.; Liu, D. L.; Zhang, B. Metallic WO2-carbon mesoporous nanowires as highly efficient electrocatalysts for hydrogen evolution reaction. J. Am. Chem. Soc. 2015, 137, 6983-6986.
Xia, X. H.; Zhu, C. R.; Luo, J. S.; Zeng, Z. Y.; Guan, C.; Ng, C. F.; Zhang, H.; Fan, H. J. Synthesis of free-standing metal sulfide nanoarrays via anion exchange reaction and their electrochemical energy storage application. Small 2014, 10, 766-773.
Wang, H.; Zhuo, S. F.; Liang, Y.; Han, X. L.; Zhang, B. General self-template synthesis of transition-metal oxide and chalcogenide mesoporous nanotubes with enhanced electrochemical performances. Angew. Chem., Int. Ed. 2016, 55, 9055-9059.
Zhu, L. P.; Wen, Z.; Mei, W. M.; Li, Y. G.; Ye, Z. Z. Porous CoO nanostructure arrays converted from rhombic Co(OH)F and needle-like Co(CO3)0.5(OH)·0.11H2O and their electrochemical properties. J. Phys. Chem. C 2013, 117, 20465-20473.
Jiang, J.; Liu, J. P.; Huang, X. T.; Li, Y. Y.; Ding, R.M.; Ji, X. X.; Hu, Y. Y.; Chi, Q. B.; Zhu, Z. H. General synthesis of large-scale arrays of one-dimensional nanostructured Co3O4 directly on heterogeneous substrates. Cryst. Growth Des. 2010, 10, 70-75.
Kresse, G.; Furthmuller, J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comp. Mater. Sci. 1996, 6, 15-50.
Kresse, G.; Furthmuller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 1996, 54, 11169-11186.
Kresse, G.; Hafner, J. Ab initio molecular-dynamics simulation of the liquid-metal-amorphous-semiconductor transition in germaniu. Phys. Rev. B 1994, 49, 14251-14269.
Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple[Phys. Rev. Lett. 77, 3865 (1996)]. Phys. Rev. Lett. 1997, 78, 1396.
Kresse, G.; Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 1999, 59, 1758-1775.
Blochl, P. E. Projector augmented-wave method. Phys. Rev. B 1994, 50, 17953-17979.
Monkhorst, H. J.; Pack, J. D. Special points for Brillouin-zone integrations. Phys. Rev. B 1976, 13, 5188-5192.
Grimme, S. Semiempirical GGA-type density functional constructed with a long-range dispersion correction. J. Comput. Chem. 2006, 27, 1787-1799.
Nøskov, J. K.; Bligaard, T.; Logadottir, A.; Kitchin, J. R.; Chen, J. G.; Pandelov, S.; Stimming, U. Trends in the exchange current for hydrogen evolutio. J. Electrochem. Soc. 2005, 152, J23-J26.
Sivanantham, A.; Ganesan, P.; Shanmugam, S. Hierarchical NiCo2S4 nanowire arrays supported on Ni foam: An efficient and durable bifunctional electrocatalyst for oxygen and hydrogen evolution reactions. Adv. Funct. Mater. 2016, 26, 4661-4672.
Gu, D.; Jia, C. -J.; Weidenthaler, C.; Bongard, H. -J.; Spliethoff, B.; Schmidt, W.; Schüth, F. Highly ordered mesoporous cobalt-containing oxides: Structure, catalytic properties, and active sites in oxidation of carbon monoxide. J. Am. Chem. Soc. 2015, 137, 11407-11418.
Martin-Aranda, R. M.; Portela, M. F.; Madeira, L. M.; Freire, F.; Oliveira, M. Effect of alkali metal promoters on nickel molybdate catalysts and its relevance to the selective oxidation of butane. Appl. Catal. A: Gen. 1995, 127, 201-217.
Ozkar, S.; Ozin, G. A.; Prokopowicz, R. A. Photooxidation of hexacarbonylmolybdenum(0) in sodium zeolite Y to yield redox-interconvertible molybdenum(Ⅵ) oxide and molybdenum(Ⅳ) oxide monomers. Chem. Mater. 1992, 4, 1380-1388.
Voiry, D.; Salehi, M.; Silva, R.; Fujita, T.; Chen, M. W.; Asefa, T.; Shenoy, V. B.; Eda, G.; Chhowalla, M. Conducting MoS2 nanosheets as catalysts for hydrogen evolution reaction. Nano Lett. 2013, 13, 6222-6227.
Xing, Z. C.; Liu, Q.; Asiri, A. M.; Sun, X. P. Closely interconnected network of molybdenum phosphide nanoparticles: A highly efficient electrocatalyst for generating hydrogen from water. Adv. Mater. 2014, 26, 5702-5707.
Zou, X. X.; Huang, X. X.; Goswami, A.; Silva, R.; Sathe, B. R.; Mikmeková, E.; Asefa, T. Cobalt-embedded nitrogen-rich carbon nanotubes efficiently catalyze hydrogen evolution reaction at all pH values. Angew. Chem., Int. Ed. 2014, 53, 4372-4376.
Gu, H. H.; Huang, Y. P.; Zuo, L. Z.; Fan, W.; Liu, T. X. Electrospun carbon nanofiber@CoS2 core/sheath hybrid as an efficient all-pH hydrogen evolution electrocatalyst. Inorg. Chem. Front. 2016, 3, 1280-1288.
Tran, P. D.; Chiam, S. Y.; Boix, P. P.; Ren, Y.; Pramana, S. S.; Fize, J.; Artero V.; Barber, J. Novel cobalt/nickel-tungsten-sulfide catalysts for electrocatalytic hydrogen generation from water. Energy Environ. Sci. 2013, 6, 2452-2459.
Shin, S.; Jin, Z. Y.; Kwon, D. H.; Bose, R.; Min, Y. -S. High turnover frequency of hydrogen evolution reaction on amorphous MoS2 thin film directly grown by atomic layer deposition. Langmuir 2015, 31, 1196-1201.
Xu, Y. F.; Gao, M. R.; Zheng, Y. R.; Jiang, J.; Yu, S. H. Nickel/nickel(Ⅱ) oxide nanoparticles anchored onto cobalt(Ⅳ) diselenide nanobelts for the electrochemical production of hydrogen. Angew. Chem., Int. Ed. 2013, 52, 8546-8550.
Lu, X. Y.; Zhao, C. Electrodeposition of hierarchically structured three-dimensional nickel-iron electrodes for efficient oxygen evolution at high current densities. Nat. Commun. 2015, 6, 6616.
Wang, J. M.; Ma, X.; Qu, F. L.; Asiri, A. M.; Sun, X. P. Fe-doped Ni2P nanosheet array for high-efficiency electrochemical water oxidation. Inorg. Chem. 2017, 56, 1041-1044.
Jiang, J.; Gao, M. R.; Sheng, W. C.; Yan, Y. S. Hollow chevrel-phase NiMo3S4 for hydrogen evolution in alkaline electrolytes. Angew. Chem., Int. Ed. 2016, 55, 15240-15245.
Yan, X. D.; Tian, L. H.; He, M.; Chen, X. B. Three-dimensional crystalline/amorphous Co/Co3O4 core/shell nanosheets as efficient electrocatalysts for the hydrogen evolution reaction. Nano Lett. 2015, 15, 6015-6021.
Chen, W.; Wang, H. T.; Li, Y. Z.; Liu, Y. Y.; Sun, J.; Lee, S. H.; Lee, J. -S.; Cui, Y. In situ electrochemical oxidation tuning of transition metal disulfides to oxides for enhanced water oxidation. ACS Cent. Sci. 2015, 1, 244-251.
Karunadasa, H. I.; Chang, C. J.; Long, J. R. A molecular molybdenum-oxo catalyst for generating hydrogen from water. Nature 2010, 464, 1329-1333.
Ren, X.; Wang, W. Y.; Ge, R. X.; Hao, S.; Qu, F. L.; Du, G.; Asiri, A. M.; Wei, Q.; Chen, L.; Sun, X. P. An amorphous FeMoS4 nanorod array toward efficient hydrogen evolution electrocatalysis under neutral conditions. Chem. Commun. 2017, 53, 9000-9003.
Li, H. M.; Qian, X.; Zhu, C. L.; Jiang, X. C.; Shao, L.; Hou, L. X. Template synthesis of CoSe2/Co3Se4 nanotubes: Tuning of their crystal structures for photovoltaics and hydrogen evolution in alkaline medium. J. Mater. Chem. A 2017, 5, 4513-4526.
Wang, W. Y.; Yang, L.; Qu, F. L.; Liu, Z. A.; Du, G.; Asiri, A. M.; Yao, Y. D.; Chen L.; Sun X. P. A self-supported NiMoS4 nanoarray as an efficient 3D cathode for the alkaline hydrogen evolution reaction. J Mater. Chem. A 2017, 5, 16585-16589.
Shao, L.; Qian, X.; Wang, X. Y.; Li, H. M.; Yan, R. C.; Hou, L. X. Low-cost and highly efficient CoMoS4/NiMoS4-based electrocatalysts for hydrogen evolution reactions over a wide pH range. Electrochim. Acta 2016, 213, 236-243.
Yu, L.; Xia, B. Y.; Wang, X.; Lou, X. W. General formation of M-MoS3 (M = Co, Ni) hollow structures with enhanced electrocatalytic activity for hydrogen evolution. Adv. Mater. 2016, 28, 92-97.