AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Ultrathin nanoporous metal–semiconductor heterojunction photoanodes for visible light hydrogen evolution

Weiqing Zhang1,§Yunfeng Zhao1,§Kai He1Jun Luo1,2Guoliang Li1,2Ruirui Liu1,2Siyu Liu1Zhen Cao1Pengtao Jing3Yi Ding1,2( )
Tianjin Key Laboratory of Advanced Functional Porous MaterialsInstitute for New Energy Materials & Low-Carbon TechnologiesSchool of Materials Science and EngineeringTianjin University of TechnologyTianjin300384China
Center for Electron MicroscopyTianjin University of TechnologyTianjin300384China
State Key Laboratory of Luminescence and ApplicationsChangchun Institute of OpticsFine Mechanics and PhysicsChinese Academy of SciencesChangchun130033China

§Weiqing Zhang and Yunfeng Zhao contributed equally to this work.

Show Author Information

Graphical Abstract

Abstract

Plasmonic metal–semiconductor nano-heterojunctions (NHJs), with their superior photocatalytic performance, provide opportunities for the efficient utilization of solar energy. However, scientific significance and technical challenges remain in the development of suitable metal–semiconductor NHJ photoelectrodes for new generation flexible optoelectronic devices, which often require complex processing. Herein, we report integrated three-dimensional (3D) NHJ photoelectrodes by conformally coating cadmium sulfide (CdS) nanolayers onto ultrathin nanoporous gold (NPG) films via a facile electrodeposition method. Localized surface plasmon resonance (LSPR) of NPG enhances the electron–hole pair generation and separation. Moreover, the direct contact interface and high conductive framework structure of the NHJs boosts the photogenerated carrier separation and transport. Hence, the NHJs exhibit evidently enhanced photocurrent density and hydrogen evolution rate relative to CdS deposited on either gold (Au) foil or fluorine-doped tin oxide (FTO) at 0 V vs. SCE (saturated calomel electrode) under visible-light irradiation. Moreover, they demonstrate a surprisingly stable photoelectrochemical hydrogen evolution (PEC-HE) activity over 104 s of continuous irradiation.

Electronic Supplementary Material

Download File(s)
12274_2017_1821_MOESM1_ESM.pdf (2.4 MB)

References

1

Grätzel, M. Photoelectrochemical cells. Nature 2001, 414, 338-344.

2

Li, Z. S.; Luo, W. J.; Zhang, M. L.; Feng, J.Y.; Zou, Z. G. Photoelectrochemical cells for solar hydrogen production: Current state of promising photoelectrodes, methods to improve their properties, and outlook. Energy Environ. Sci. 2013, 6, 347-370.

3

Scheuermann, A. G.; Lawrence, J. P.; Kemp, K. W.; Ito, T.; Walsh, A.; Chidsey, C. E. D.; Hurley, P. K.; McIntyre, P. C. Design principles for maximizing photovoltage in metal-oxide-protected water-splitting photoanodes. Nat. Mater. 2016, 15, 99-105.

4

Moniz, S. J. A.; Shevlin, S. A.; Martin, D. J.; Guo, Z. X.; Tang, J. W. Visible-light driven heterojunctionphotocatalysts for water splitting-a critical review. Energy Environ. Sci. 2015, 8, 731-759.

5

Yang, J. H.; Wang, D. E.; Han, H. X.; Li, C. Roles ofcocatalysts in photocatalysis and photoelectrocatalysis. Acc. Chem. Res. 2013, 46, 1900-1909.

6

Sun, Z. J.; Zheng, H. F.; Li, J. S.; Du, P. W. Extraordinarily efficient photocatalytic hydrogen evolution in water using semiconductor nanorods integrated with crystalline Ni2P cocatalysts. Energy Environ. Sci. 2015, 8, 2668-2676.

7

Zhuang, T. T.; Liu, Y.; Li, Y.; Zhao, Y.; Wu, L.; Jiang, J.; Yu, S. H. Integration of semiconducting sulfides for full-spectrum solar energy absorption and efficient charge separation. Angew. Chem., Int. Ed. 2016, 55, 6396-6400.

8

Wei, Y. K.; Su, J. Z.; Wan, X. K.; Guo, L. J.; Vayssieres, L. Spontaneous photoelectric field-enhancement effect prompts the low cost hierarchical growth of highly ordered heteronanostructures for solar water splitting. Nano Res. 2016, 9, 1561-1569.

9

Wu, F. L.; Cao, F. R.; Liu, Q.; Lu, H.; Li, L. Enhancing photoelectrochemical activity with three-dimensional p-CuO/n-ZnO junction photocathodes. Sci. China Mater. 2016, 59, 825-832.

10

Kalisman, P.; Nakibli, Y.; Amirav, L. Perfect photon-to-hydrogen conversion efficiency. Nano Lett. 2016, 16, 1776-1781.

11

Chen, X. X.; Li, Y. P.; Pan, X. Y.; Cortie, D.; Huang, X. T.; Yi, Z. G. Photocatalytic oxidation of methane over silver decorated zinc oxide nanocatalysts. Nat. Commun. 2016, 7, 12273.

12

Zhang, J. M.; Jin, X.; Morales-Guzman, P. I.; Yu, X.; Liu, H.; Zhang, H.; Razzari, L.; Claverie, J. P. Engineering the absorption and field enhancement properties of Au-TiO2 nanohybrids via whispering gallery mode resonances for photocatalytic water splitting. ACS Nano 2016, 10, 4496-4503.

13

Hu, D. Y.; Diao, P.; Xu, D.; Wu, Q. Y. Gold/WO3 nanocompositephotoanodes for plasmonic solar water splitting. Nano Res. 2016, 9, 1735-1751.

14

Xian, J. J.; Li, D. Z.; Chen, J.; Li, X. F.; He, M.; Shao, Y.; Yu, L. H.; Fang, J. L. TiO2 nanotube array-graphene-CdS quantum dots composite film in Z-scheme with enhanced photoactivity and photostability. ACS Appl. Mater. Interfaces 2014, 6, 13157-13166.

15

Kofuji, Y.; Isobe, Y.; Shiraishi, Y.; Sakamoto, H.; Tanaka, S.; Ichikawa, S.; Hirai, T. Carbon nitride-aromatic diimide-graphenenanohybrids: Metal-free photocatalysts for solar-to-hydrogen peroxide energy conversion with 0.2% efficiency. J. Am. Chem. Soc. 2016, 138, 10019-10025.

16

Liu, W. X.; Liu, Z. Y.; Wang, G. N.; Sun, X. M.; Li, Y. P.; Liu, J. F. Carbon coated Au/TiO2 mesoporous microspheres: A novel selective photocatalyst. Sci. China Mater. 2017, 60, 438-448.

17

Li, J. T.; Cushing, S. K.; Zheng, P.; Meng, F. K.; Chu, D.; Wu, N. Q. Plasmon-induced photonic and energy-transfer enhancement of solar water splitting by a hematite nanorod array. Nat. Commun. 2013, 4, 2651.

18

Cushing, S. K.; Wu, N. Q. Plasmon-enhanced solar energy harvesting. Electrochem. Soc. Interface 2013, 22, 63-67.

19

Thomann, I.; Pinaud, B. A.; Chen, Z. B.; Clemens, B. M.; Jaramillo, T. F.; Brongersma, M. L. Plasmon enhanced solar-to-fuel energy conversion. Nano Lett. 2011, 11, 3440-3446.

20

Linic, S.; Christopher, P.; Ingram, D. B. Plasmonic-metal nanostructures for efficient conversion of solar to chemical energy. Nat. Mater. 2011, 10, 911-921.

21

Xing, X. L.; Liu, R. J.; Yu, X. L.; Zhang, G. J.; Cao, H. B.; Yao, J. N.; Ren, B. Z.; Jiang, Z. X.; Zhao, H. Self-assembly of CdS quantum dots with polyoxometalate encapsulated gold nanoparticles: Enhanced photocatalytic activities. J. Mater. Chem. A 2013, 1, 1488-1494.

22

Li, G. L.; Cherqui, C.; Bigelow, N. W.; Duscher, G.; Straney, P. J.; Millstone, J. E.; Masiello, D. J.; Camden, J. P. Spatially mapping energy transfer from single plasmonic particles to semiconductor substrates via STEM/EELS. Nano Lett. 2015, 15, 3465-3471.

23

Smith, J. G.; Faucheaux, J. A.; Jain, P. K. Plasmon resonances for solar energy harvesting: A mechanistic outlook. Nanotoday 2015, 10, 67-80.

24

Warren, S. C.; Thimsen, E. Plasmonic solar water splitting. Energy Environ. Sci. 2012, 5, 5133-5146.

25

Maaroof, A. I.; Lee, H.; Heo, K.; Park, J.; Cho, D.; Lee, B. Y.; Seong, M. J.; Hong, S. Plasmon-exciton interactions in hybrid structures of au nanohemispheres and CdS nanowires for improved photoconductive devices. J. Phys. Chem. C 2013, 117, 24543-24548.

26

Li, M.; Yu, X. F.; Liang, S.; Peng, X. N.; Yang, Z. J.; Wang, Y. L.; Wang, Q. Q. Synthesis of Au-CdS core-shell hetero-nanorods with efficient exciton-plasmon interactions. Adv. Funct. Mater. 2011, 21, 1788-1794.

27

Wu, K. F.; Rodríguez-Córdoba, W. E.; Yang, Y.; Lian, T. Q. Plasmon-induced hot electron transfer from the Au tip to CdSrod in CdS-Au nanoheterostructures. Nano Lett. 2013, 13, 5255-5263.

28

Wang, X. T.; Liow, C.; Qi, D. P.; Zhu, B. W.; Leow, W. R.; Wang, H.; Xue, C.; Chen, X. D.; Li, S. Z. Programmable photo-electrochemical hydrogen evolution based on multi-segmented CdS-Au nanorod arrays. Adv. Mater. 2014, 26, 3506-3512.

29

Saliba, M.; Zhang, W.; Burlakov, V. M.; Stranks, S. D.; Sun, Y.; Ball, J. M.; Johnston, M. B.; Goriely, A.; Wiesner, U.; Snaith, H. J. Plasmonic-induced photon recycling in metal halide perovskite solar cells. Adv. Funct. Mater. 2015, 25, 5038-5046.

30

Zheng, X. L.; Song, J. P.; Ling, T.; Hu, Z. P.; Yin, P. F.; Davey, K.; Du, X. W.; Qiao, S. Z. Strongly coupled nafion molecules and ordered porous CdS networks for enhanced visible-light photoelectrochemical hydrogen evolution. Adv. Mater. 2016, 28, 4935-4942.

31

Chen, M.; Gu, J. J.; Sun, C.; Zhao, Y. X.; Zhang, R. X.; You, X. Y.; Liu, Q. L.; Zhang, W.; Su, Y. S.; Su, H. L. et al. Light-driven overall water splitting enabled by a photo-dember effect realized on 3D plasmonic structures. ACS Nano 2016, 10, 6693-6701.

32

Hou, Y.; Zuo, F.; Dagg, A.; Feng, P. Y. A three-dimensional branched cobalt-doped α-Fe2O3 nanorod/MgFe2O4 heterojunction array as a flexible photoanode for efficient photoelectrochemical water oxidation. Angew. Chem., Int. Ed. 2013, 125, 1248-1252.

33

Yan, L. J.; Liu, Y.; Yan, Y. N.; Wang, L. F.; Han, J.; Wang, Y. N.; Zhou, G. W.; Swihart, M. T.; Xu, X. H. Improved plasmon-assisted photoelectric conversion efficiency across entire ultraviolet-visible region based on antenna-on zinc oxide/silver three-dimensional nanostructured films. Nano Res. 2017. DOI 10.1007/s12274-017-1663-7.

34

Law, M.; Greene, L. E.; Johnson, J. C.; Saykally, R.; Yang, P. D. Nanowire dye-sensitized solar cells. Nat. Mater. 2005, 4, 455-459.

35

Ye, M. D.; Xin, X. K.; Lin, C. J.; Lin, Z. Q. High efficiency dye-sensitized solar cells based on hierarchically structured nanotubes. Nano Lett. 2011, 11, 3214-3220.

36

Chen, W. T.; Yang, T. T.; Hsu, Y. J. Au-CdS core-shell nanocrystals with controllable shell thickness and photoinduced charge separation property. Chem. Mater. 2008, 20, 7204-7206.

37

Yin, X. L.; He, G. Y.; Sun, B.; Jiang, W. J.; Xue, D. J.; Xia, A. D.; Wan, L. J.; Hu, J. S. Rational design and electron transfer kinetics of MoS2/CdSnanodots-on-nanorods for efficient visible-light-driven hydrogen generation. Nano Energy 2016, 28, 319-329.

38

Lang, X. Y.; Qian, L. H.; Guan, P. F.; Zi, J.; Chen, M. W. Localized surface Plasmon resonance of nanoporous gold. Appl. Phys. Lett. 2011, 98, 093701.

39

Jia, C. C.; Yin, H. M.; Ma, H. Y.; Wang, R. Y.; Ge, X. B.; Zhou, A. Q.; Xu, X. H.; Ding, Y. Enhanced photoelectrocatalytic activity of methanol oxidation on TiO2-decorated nanoporous gold. J. Phys. Chem. C 2009, 113, 16138-16143.

40

Jia, C. C.; Li, X. X.; Xin, N.; Gong, Y.; Guan, J. X.; Meng, L. A.; Meng, S.; Guo, X. F. Interface-engineered plasmonics in metal/semiconductor heterostructures. Adv. Energy Mater. 2016, 6, 1600431.

41

Zhang, L.; Chen, L. Y.; Liu, H. W.; Hou, Y.; Hirata, A.; Fujita, T.; Chen, M. W. Effect of residual silver on surface-enhanced Raman scattering of dealloyednanoporousgold. J. Phys. Chem. C 2011, 115, 19583-19587.

42

Zhang, W. Q.; Rahmani, M.; Niu, W. X.; Ravaine, S.; Hong, M. H.; Lu, X. M. Tuning interior nanogaps of double-shelled Au/Ag nanoboxes for surface-enhanced Raman scattering. Sci. Rep. 2015, 5, 8382.

43

Achermann, M. Exciton-plasmon interactions in metal-semiconductor nanostructures. J. Phys. Chem. Lett. 2010, 1, 2837-2843.

44

Ding, Y.; Kim, Y. J.; Erlebacher, J. Nanoporous gold leaf: "Ancient technology"/advanced material. Adv. Mater. 2004, 16, 1897-1900.

45

Li, J.; Yin, H. M.; Li, X. B.; Okunishi, E.; Shen, Y. L.; He, J.; Tang, Z. K.; Wang, W. X.; Yücelen, E.; Li, C. et al. Surface evolution of a Pt-Pd-Au electrocatalyst for stable oxygen reduction. Nat. Energy 2017, 2, 17111

46

Fakharuddin, A.; Di Giacomo, F.; Palma, A. L.; Matteocci, F.; Ahmed, I.; Razza, S.; D'Epifanio, A.; Licoccia, S.; Ismail, J.; Di Carlo, A. et al. Vertical TiO2 nanorods as a medium for stable and high-efficiency perovskite solar modules. ACS Nano 2015, 9, 8420-8429.

47

Xiao, Z. G.; Bi, C.; Shao, Y. C.; Dong, Q. F.; Wang, Q.; Yuan, Y.B.; Wang, C. G.; Gao, Y. L.; Huang, J. S. Efficient, high yield perovskite photovoltaic devices grown by interdiffusion of solution-processed precursor stacking layers. Energy Environ. Sci. 2014, 7, 2619-2623.

48

Ibrahim, I.; Lim, H. N.; Abou-Zied, O. K.; Huang, N. M.; Estrela, P.; Pandikumar, A. Cadmium sulfide nanoparticles decorated with Au Quantum dots as ultrasensitive photoelectrochemical sensor for selective detection of copper(Ⅱ) ions. J. Phys. Chem. C 2016, 120, 22202-22214.

49

Khon, E.; Mereshchenko, A.; Tarnovsky, A. N.; Acharya, K.; Klinkova, A.; Hewa-Kasakarage, N. N.; Nemitz, I.; Zamkov, M. Suppression of the plasmon resonance in Au/CdS colloidal nanocomposites. Nano Lett. 2011, 11, 1792-1799.

50

Maity, P.; Debnath, T.; Ghosh, H. N. Ultrafast hole- and electron-transfer dynamics in CdS-dibromofluorescein (DBF) supersensitized quantum dot solar cell materials. J. Phys. Chem. Lett. 2013, 4, 4020-4025.

51

Jana, A.; Bhattacharya, C.; Datta, J. Enhanced photoelectrochemical activity of electro-synthesized CdS-Bi2S3 composite films grown with self-designed cross-linked structure. Electrochim. Acta 2010, 55, 6553-6562.

52

Iozzo, D. A. B.; Tong, M.; Wu, G.; Furlani, E. P. Numerical analysis of electric double layer capacitors with mesoporous electrodes: Effects of electrode and electrolyte properties. J. Phys. Chem. C 2015, 119, 25235-25242.

53

Tang, Y. H.; Hu, X.; Liu, C. B. Perfect inhibition of CdS photocorrosion by graphene sheltering engineering on TiO2 nanotube array for highly stable photocatalytic activity. Phys. Chem. Chem. Phys. 2014, 16, 25321-25329.

54

Duwez, A.S. Exploiting electron spectroscopies to probe the structure and organization of self-assembled monolayers: a review. J. ElectronSpectrosc. Relat. Phenom. 2004, 134, 97-138.

55

Ma, X.; Zhao, K.; Tang, H. J.; Chen, Y.; Lu, C. G.; Liu, W.; Gao, Y.; Zhao, H. J.; Tang, Z. Y. New insight into the role of gold nanoparticles in Au@CdScore-shell nanostructures for hydrogen evolution. Small 2014, 10, 4664-4670.

56

Murray, W. A.; Barnes, W. L. Plasmonic materials. Adv. Mater. 2007, 19, 3771-3782.

57

Wu, K.; Chen, J.; McBride, J. R.; Lian, T. Efficient hot-electron transfer by a plasmon-induced interfacial charge-transfer transition. Science 2015, 349, 632-635.

Nano Research
Pages 2046-2057
Cite this article:
Zhang W, Zhao Y, He K, et al. Ultrathin nanoporous metal–semiconductor heterojunction photoanodes for visible light hydrogen evolution. Nano Research, 2018, 11(4): 2046-2057. https://doi.org/10.1007/s12274-017-1821-y

747

Views

9

Crossref

N/A

Web of Science

9

Scopus

0

CSCD

Altmetrics

Received: 20 July 2017
Revised: 21 August 2017
Accepted: 22 August 2017
Published: 19 March 2018
© Tsinghua University Press and Springer-Verlag GmbH Germany 2017
Return