AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Pd/Ag nanosheet as a plasmonic sensing platform for sensitive assessment of hydrogen evolution reaction in colloid solutions

Minmin Wang1,2Ping Wang1Jie Zhang1Hui Hou1,2Chuanping Li1,2Yongdong Jin1( )
State Key Laboratory of Electroanalytical ChemistryChangchun Institute of Applied ChemistryChinese Academy of SciencesChangchun130022China
University of Chinese Academy of SciencesBeijing100049China
Show Author Information

Graphical Abstract

Abstract

A nanoplasmonic hydrogen-sensing system based on palladium/silver nanosheets (Pd/Ag NSs) was developed and used for sensitive assessment of the hydrogen evolution reaction (HER) in colloid solutions. As a model HER system, the semiconductor CdS/CdSe core/shell quantum dot (QD)-based hydrogen-producing colloidal system was used, and the HER performances of QDs with two different surface coatings were assessed in this study. In the sensing system, the photocatalytically generated hydrogen reacts with Pd/Ag NSs, resulting in a gradual red-shift of localized surface plasmon resonance, which to a certain degree is almost linearly proportional to the amount of hydrogen generated. Such a nanoplasmonic hydrogen sensing platform would be useful as an alternative for optical assessment and fast selection of a highly efficient and cost-effective solar hydrogen generation system for practical applications.

Electronic Supplementary Material

Download File(s)
12274_2017_1827_MOESM1_ESM.pdf (3.2 MB)

References

1

Li, Q.; Guo, B. D.; Yu, J. G.; Ran, J. R.; Zhang, B. H.; Yan, H. J.; Gong, J. R. Highly efficient visible-light-driven photocatalytic hydrogen production of CdS-cluster-decorated graphene nanosheets. J. Am. Chem. Soc. 2011, 133, 10878-10884.

2

Chen, X. B.; Shen, S. H.; Guo, L. J.; Mao, S. S. Semiconductor-based photocatalytic hydrogen generation. Chem. Rev. 2010, 110, 6503-6570.

3

Cherevko, S.; Kulyk, N.; Chung, C. H. Nanoporous Pt@AuxCu100-x by hydrogen evolution assisted electrodeposition of AuxCu100-x and galvanic replacement of Cu with Pt: Electrocatalytic properties. Langmuir 2012, 28, 3306-3315.

4

Feng, J. X.; Ding, L. X.; Ye, S. H.; He, X. J.; Xu, H.; Tong, Y. X.; Li, G. R. Co(OH)2@PANI hybrid nanosheets with 3D networks as high-performance electrocatalysts for hydrogen evolution reaction. Adv. Mater. 2015, 27, 7051-7057.

5

Nann, T.; Ibrahim, S. K.; Woi, P. M.; Xu, S.; Ziegler, J.; Pickett, C. J. Water splitting by visible light: A nanophotocathode for hydrogen production. Angew. Chem., Int. Ed. 2010, 49, 1574-1577.

6

Kudo, A.; Miseki, Y. Heterogeneous photocatalyst materials for water splitting. Chem. Soc. Rev. 2009, 38, 253-278.

7

Murdoch, M.; Waterhouse, G. I. N.; Nadeem, M. A.; Metson, J. B.; Keane, M. A.; Howe, R. F.; Llorca. J.; Idriss. H. The effect of gold loading and particle size on photocatalytic hydrogen production from ethanol over Au/TiO2 nanoparticles. Nat. Chem. 2011, 3, 489-492.

8

Clavero, C. Plasmon-induced hot-electron generation at nanoparticle/metal-oxide interfaces for photovoltaic and photocatalytic devices. Nat. Photonics 2014, 8, 95-103.

9

Zhao, Z. L.; Wang, P.; Xu, X. L.; Sheves, M.; Jin, Y. D. Bacteriorhodopsin/Ag nanoparticle-based hybrid nano-bio electrocatalyst for efficient and robust H2 evolution from water. J. Am. Chem. Soc. 2015, 137, 2840-2843.

10

Wang, P.; Zhang, J.; He, H. L.; Xu, X. L.; Jin, Y. D. Efficient visible light-driven H2 production in water by CdS/CdSe core/shell nanocrystals and an ordinary nickel-sulfur complex. Nanoscale 2014, 6, 13470-13475.

11

Yan, H. J.; Yang, J. H.; Ma, G. J.; Wu, G. P.; Zong, X.; Lei, Z. B.; Shi, J. Y.; Li, C. Visible-light-driven hydrogen production with extremely high quantum efficiency on Pt-PdS/CdS photocatalyst. J. Catal. 2009, 266, 165-168.

12

Khan, S. U. M.; Al-Shahry, M.; Ingler Jr, W. B. Efficient photochemical water splitting by a chemically modified n-TiO2. Science 2002, 297, 2243-2245.

13

Santato, C.; Ulmann, M.; Augustynski, J. Enhanced visible light conversion efficiency using nanocrystalline WO3 films. Adv. Mater. 2001, 13, 511-514.

14

Seh, Z. W.; Liu, S. H.; Low, M.; Zhang, S. Y.; Liu, Z. L.; Mlayah, A.; Han, M. Y. Janus Au-TiO2 Photocatalysts with strong localizationof plasmonic near-fields for efficient visible-light hydrogen generation. Adv. Mater. 2012, 24, 2310-2314.

15

Zheng, Z. K.; Tachikawa, T.; Majima, T. Single-particle study of Pt-modified Au nanorods for plasmon-enhanced hydrogen generation in visible to near-infrared region. J. Am. Chem. Soc. 2014, 136, 6870-6873.

16

Som, T.; Karmakar, B. Core-shell Au-Ag nanoparticles in dielectric nanocomposites with plasmon-enhanced fluorescence: A new paradigm in antimony glasses. Nano Res. 2009, 2, 607-616.

17

Lu, X. M.; Au, L.; McLellan, J.; Li, Z. Y.; Marquez, M.; Xia, Y. N. Fabrication of cubic nanocages and nanoframes by dealloying Au/Ag alloy nanoboxes with an aqueous etchant based on Fe(NO3)3 or NH4OH. Nano Lett. 2007, 7, 1764-1769.

18

Sun, Y. G.; Xia, Y. N. Shape-controlled synthesis of gold and silver nanoparticles. Science 2002, 298, 2176-2179.

19

Huang, X. Q.; Tang, S. H.; Mu, X. L.; Dai, Y.; Chen, G. X.; Zhou, Z. Y.; Ruan, F. X.; Yang, Z. L.; Zheng, N. F. Freestanding palladium nanosheets with plasmonic and catalytic properties. Nat. Nanotechnol. 2011, 6, 28-32.

20

Mayer, K. M.; Hafner, J. H. Localized surface plasmon resonance sensors. Chem. Rev. 2011, 111, 3828-3857.

21

Mahmoud, M. A.; Chamanzar, M.; Adibi, A.; El-Sayed, M. A. Effect of the dielectric constant of the surrounding medium and the substrate on the surface plasmon resonance spectrum and sensitivity factors of highly symmetric systems: silver nanocubes. J. Am. Chem. Soc. 2012, 134, 6434-6442.

22

Kong, X. M.; Yu, Q.; Zhang, X. F.; Du, X. Z.; Gong, H.; Jiang, H. Synthesis and application of surface enhanced Raman scattering (SERS) tags of Ag@SiO2 core/shell nanoparticles in protein detection. J. Mater. Chem. 2012, 22, 7767-7774.

23

Kuang, X.; Ye, S. J.; Li, X. Y.; Ma, Y.; Zhang, C. Y.; Tang, B. A new type of surface-enhanced Raman scattering sensor for the enantioselective recognition of D/L-cysteine and D/L-asparagine based on a helically arranged Ag NPs@homochiral MOF. Chem. Commun. 2016, 52, 5432-5435.

24

Han, Z. J.; Qiu, F.; Eisenberg, R.; Holland, P. L.; Krauss, T. D. Robust photogeneration of H2 in water using semiconductor nanocrystals and a nickel catalyst. Science 2012, 338, 1321-1324.

25

Kelly, K. L.; Coronado, E.; Zhao, L. L.; Schatz, G. C. The optical properties of metal nanoparticles: The influence of size, shape, and dielectric environment. J. Phys. Chem. B 2003, 107, 668-677.

26

Yang, F.; Jung, D.; Penner, R. M. Trace detection of dissolved hydrogen gas in oil using a palladium nanowire array. Anal. Chem. , 2011, 83, 9472-9477.

27

Tong, P. V.; Hoa, N. D.; Duy, N. V.; Quang, V. V.; Lam, N. T.; Hieu, N. V. In-situ decoration of Pd nanocrystals on crystalline mesoporous NiO nanosheets for effective hydrogen gas sensors. Int. J. Hydrogen Energy, 2013, 38, 12090-12100.

28

Wadell, C.; Syrenova, S.; Langhammer, C. Plasmonic hydrogen sensing with nanostructured metal hydrides. ACS Nano 2014, 8, 11925-11940.

29

Yang, A. K.; Huntington, M. D.; Fernanda Cardinal, M.; Masango, S. S.; Van Duyne, R. P.; Odom, T. W. Hetero-oligomer nanoparticle arrays for plasmon-enhanced hydrogen sensing. ACS Nano 2014, 8, 7639-7347.

30

Favier, F.; Walter, E. C.; Zach, M. P.; Benter, T.; Penner, R. M. Hydrogen sensors and switches from electrodeposited palladium mesowire arrays. Science 2001, 293, 2227-2231.

31

Langhammer, C.; Zorić, I.; Kasemo, B.; Clemens, B. M. Hydrogen storage in Pd nanodisks characterized with a novel nanoplasmonic sensing scheme. Nano Lett. 2007, 7, 3122-3127.

32

Kobayashi, H.; Yamauchi, M.; Kitagawa, H.; Kubota, Y.; Kato, K.; Takata, M. On the nature of strong hydrogen atom trapping inside Pd nanoparticles. J. Am. Chem. Soc. 2008, 130, 1828-1829.

33

Sun, Y. G.; Tao, Z. L.; Chen, J.; Herricks, T.; Xia, Y. N. Ag nanowires coated with Ag/Pd alloy sheaths and their use as substrates for reversible absorption and desorption of hydrogen. J. Am. Chem. Soc. 2004, 126, 5940-5941.

34

Huang, X. Q.; Tang, S. H.; Liu, B. J.; Ren, B.; Zheng, N. F. Enhancing the photothermal stability of plasmonic metal nanoplates by a core-shell architecture. Adv. Mater. 2011, 23, 3420-3425.

35

Yu, W. W.; Qu, L. H.; Guo, W. Z.; Peng, X. G. Experimental determination of the extinction coefficient of CdTe, CdSe, and CdS nanocrystals. Chem. Mater. 2003, 15, 2854-2860.

36

Li, J. J.; Wang, Y. A.; Guo, W. Z.; Keay, J. C.; Mishima, T. D.; Johnson, M. B.; Peng, X. G. Large-scale synthesis of nearly monodisperse CdSe/CdS core/shell nanocrystals using air-stable reagents via successive ion layer adsorption and reaction. J. Am. Chem. Soc. 2003, 125, 12567-12575.

37

Liu, N.; Tang, M. L.; Hentschel, M.; Giessen, H.; Alivisatos, A. P. Nanoantenna-enhanced gas sensing in a single tailored nanofocus. Nat. Mater. 2011, 10, 631-636.

38

Ben-Shahar, Y.; Scotognella, F.; Waiskopf, N.; Kriegel, I.; Dal Conte, S.; Cerullo, G.; Banin, U. Effect of surface coating on the photocatalytic function of hybrid CdS-Au nanorods. Small 2015, 11, 462-471.

39

Narehood, D. G.; Kishore, S.; Goto, H.; Adair, J. H.; Nelson, J. A.; Gutiérrez, H. R. X-ray diffraction and H-storage in ultra-small palladium particles. Int. J. Hydrogen Energy, 2009, 34, 952-960.

40

Sinha, S.; Badrinarayanan, S.; Sinha, A. P. B. The Pd-H system revisited: An XPS and UPS study. J. Phys. F: Met. Phys. 1986, 9, L229-L232.

41

Saha, J.; Dandapat, A.; De, G. Transformation of Pd → PdH0.7 nanoparticles inside mesoporous Zr-modified SiO2 films in ambient conditions. J. Mater. Chem. 2011, 21, 11482-11485.

Nano Research
Pages 2093-2103
Cite this article:
Wang M, Wang P, Zhang J, et al. Pd/Ag nanosheet as a plasmonic sensing platform for sensitive assessment of hydrogen evolution reaction in colloid solutions. Nano Research, 2018, 11(4): 2093-2103. https://doi.org/10.1007/s12274-017-1827-5

635

Views

15

Crossref

N/A

Web of Science

16

Scopus

1

CSCD

Altmetrics

Received: 11 June 2017
Revised: 09 August 2017
Accepted: 29 August 2017
Published: 19 March 2018
© Tsinghua University Press and Springer-Verlag GmbH Germany 2017
Return