AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Temperature modulation of concentration quenching in lanthanide-doped nanoparticles for enhanced upconversion luminescence

Luoyuan Li1,§Ningjiu Zhao1,2,§Limin Fu1( )Jing Zhou3Xicheng Ai1Jianping Zhang1
Department of ChemistryRenmin University of ChinaBeijing100872China
State Key Laboratory of Molecular Reaction DynamicsDalian Institute of Chemical PhysicsChinese Academy of SciencesDalian116023China
Department of ChemistryCapital Normal UniversityBeijing100048China

§Luoyuan Li and Ningjiu Zhao contributed equally to this work.

Show Author Information

Graphical Abstract

Abstract

The doping concentration of lanthanide ions is important for manipulating the luminescence properties of upconversion nanoparticles (UCNPs). However, the serious concentration quenching in highly doped UCNPs remains a vital restriction for further enhanced upconversion luminescence (UCL). Herein, we examined the effect of temperature on the concentration quenching of rare-earth UCNPs, an issue that has been overlooked, and we show that it is significant for biomedical or optical applications of UCNPs. In this work, we prepared a series of UCNPs by doping Er3+ luminescent centers at different concentrations in a NaLuF4: Yb3+ matrix. At room temperature (298 K), steady-state photoluminescence (PL) spectroscopy showed substantial concentration quenching of the Er3+ emission with increasing doping concentrations. However, the concentration quenching effect was no longer effective at lower temperatures. Kinetic curves obtained from time-resolved PL spectroscopy further showed that the concentration quenching dynamics were vitally altered in the cryogenic temperature region, i.e., below 160 K. Our work on the temperature-switchable concentration quenching mechanism may shed light on improving UCL properties, promoting their practical applications.

Electronic Supplementary Material

Download File(s)
12274_2017_1828_MOESM1_ESM.pdf (1 MB)

References

1

Auzel, F. Upconversion and anti-stokes processes with f and d ions in solids. Chem. Rev. 2004, 104, 139–174.

2

Bloembergen, N. Solid state infrared quantum counters. Phys. Rev. Lett. 1959, 2, 84–85.

3

Gamelin, D. R.; Güdel, H. U. Design of luminescent inorganic materials: New photophysical processes studied by optical spectroscopy. Acc. Chem. Res. 2000, 33, 235–242.

4

Dong, H.; Sun, L. D.; Yan, C. H. Energy transfer in lanthanide upconversion studies for extended optical applications. Chem. Soc. Rev. 2015, 44, 1608–1634.

5

Liu, Y. Y.; Zhang, J. W.; Zuo, C. J.; Zhang, Z.; Ni, D. L.; Zhang, C.; Wang, J.; Zhang, H.; Yao, Z. W.; Bu, W. B. Upconversion nano-photosensitizer targeting into mitochondria for cancer apoptosis induction and cyt c fluorescence monitoring. Nano Res. 2016, 9, 3257–3266.

6

Li, X. M.; Zhang, F.; Zhao, D. Y. Lab on upconversion nanoparticles: optical properties and applications engineering via designed nanostructure. Chem. Soc. Rev. 2015, 44, 1346–1378.

7

Tan, G. R.; Wang, M. H.; Hsu, C. Y.; Chen, N. G.; Zhang, Y. Small upconverting fluorescent nanoparticles for biosensing and bioimaging. Adv. Opt. Mater. 2016, 4, 984–997.

8

Dong, H.; Du, S. R.; Zheng, X. Y.; Lyu, G. -M.; Sun, L. D.; Li, L. D.; Zhang, P. Z.; Zhang, C.; Yan, C. H. Lanthanide nanoparticles: From design toward bioimaging and therapy. Chem. Rev. 2015, 115, 10725–10815.

9

Chen, G. Y.; Ågren, H.; Ohulchanskyy, T. Y.; Prasad, P. N. Light upconverting core-shell nanostructures: Nanophotonic control for emerging applications. Chem. Soc. Rev. 2015, 44, 1680–1713.

10

Ding, X.; Liu, J. H.; Liu, D. P.; Li, J. Q.; Wang, F.; Li, L. J.; Wang, Y. H.; Song, S. Y.; Zhang, H. J. Multifunctional core/satellite polydopamine@Nd3+-sensitized upconversion nanocomposite: A single 808 nm near-infrared light-triggered theranostic platform for in vivo imaging-guided photothermal therapy. Nano Res. 2017, 10, 3434–3446.

11

Zhou, B.; Shi, B. Y.; Jin, D. Y.; Liu, X. G. Controlling upconversion nanocrystals for emerging applications. Nat. Nanotechnol. 2015, 10, 924–936.

12

Zhou, J.; Liu, Q.; Feng, W.; Sun, Y.; Li, F. Y. Upconversion luminescent materials: Advances and applications. Chem. Rev. 2015, 115, 395–465.

13

Zheng, W.; Huang, P.; Tu, D. T.; Ma, E.; Zhu, H. M.; Chen, X. Y. Lanthanide-doped upconversion nano-bioprobes: Electronic structures, optical properties, and biodetection. Chem. Soc. Rev. 2015, 44, 1379–1415.

14

Chen, G. Y.; Qiu, H. L.; Prasad, P. N.; Chen, X. Y. Upconversion nanoparticles: Design, nanochemistry, and applications in theranostics. Chem. Rev. 2014, 114, 5161–5214.

15

Sun, L. D.; Wang, Y. -F.; Yan, C. H. Paradigms and challenges for bioapplication of rare earth upconversion luminescent nanoparticles: Small size and tunable emission/excitation spectra. Acc. Chem. Res. 2014, 47, 1001–1009.

16

Idris, N. M.; Jayakumar, M. K. G.; Bansal, A.; Zhang, Y. Upconversion nanoparticles as versatile light nanotransducers for photoactivation applications. Chem. Soc. Rev. 2015, 44, 1449–1478.

17

Yang, D. M.; Ma, P. A.; Hou, Z. Y.; Cheng, Z. Y.; Li, C. X.; Lin, J. Current advances in lanthanide ion (Ln3+)-based upconversion nanomaterials for drug delivery. Chem. Soc. Rev. 2015, 44, 1416–1448.

18

Dai, Y. L.; Xiao, H. H.; Liu, J. H.; Yuan, Q. H.; Ma, P. A.; Yang, D. M.; Li, C. X.; Cheng, Z. Y.; Hou, Z. Y.; Yang, P. P. et al. In vivo multimodality imaging and cancer therapy by near-infrared light-triggered trans-platinum pro-drugconjugated upconverison nanoparticles. J. Am. Chem. Soc. 2013, 135, 18920–18929.

19

Liu, G. K. Advances in the theoretical understanding of photon upconversion in rare-earth activated nanophosphors. Chem. Soc. Rev. 2015, 44, 1635–1652.

20

Tu, L. P.; Liu, X. M.; Wu, F.; Zhang, H. Excitation energy migration dynamics in upconversion nanomaterials. Chem. Soc. Rev. 2015, 44, 1331–1345.

21

Johnson, N. J. J.; He, S.; Diao, S.; Chan, E. M.; Dai, H. J.; Almutairi, A. Direct evidence for coupled surface and concentration quenching dynamics in lanthanide-doped nanocrystals. J. Am. Chem. Soc. 2017, 139, 3275–3282.

22

Wei, W.; Chen, G. Y.; Baev, A.; He, G. S.; Shao, W.; Damasco, J.; Prasad, P. N. Alleviating luminescence concentration quenching in upconversion nanoparticles through organic dye sensitization. J. Am. Chem. Soc. 2016, 138, 15130–15133.

23

Wei, W.; Zhang, Y.; Chen, R.; Goggi, J.; Ren, N.; Huang, L.; Bhakoo, K. K.; Sun, H. D.; Tan, T. T. Y. Cross relaxation induced pure red upconversion in activator- and sensitizerrich lanthanide nanoparticles. Chem. Mater. 2014, 26, 5183–5186.

24

Quimby, R. S.; Aitken, B. G. Multiphonon energy gap law in rare-earth doped chalcogenide glass. J. Non-Cryst. Solids 2003, 320, 100–112.

25

Zhao, J. B.; Jin, D. Y.; Schartner, E. P.; Lu, Y. Q.; Liu, Y. J.; Zvyagin, A. V.; Zhang, L. X.; Dawes, J. M.; Xi, P.; Piper, J. A. et al. Single-nanocrystal sensitivity achieved by enhanced upconversion luminescence. Nat. Nanotechnol. 2013, 8, 729–734.

26

Wang, J.; Deng, R. R.; MacDonald, M. A. B.; Chen, B. L.; Yuan, J. K.; Wang, F.; Chi, D. Z.; Hor, T. A. A.; Zhang, P.; Liu, G. K. et al. Enhancing multiphoton upconversion through energy clustering at sublattice level. Nat. Mater. 2014, 13, 157–162.

27

Liu, N.; Qin, W. P.; Qin, G. S.; Jiang, T.; Zhao, D. Highly Plasmon-enhanced upconversion emissions from Au@β-NaYF4: Yb, Tm hybrid nanostructures. Chem. Commun. 2011, 47, 7671–7673.

28

Chen, B.; Liu, Y.; Xiao, Y.; Chen, X.; Li, Y.; Li, M. Y.; Qiao, X. S.; Fan, X. P.; Wang, F. Amplifying excitationpower sensitivity of photon upconversion in a NaYbF4: Ho nanostructure for direct visualization of electromagnetic hotspots. J. Phys. Chem. Lett. 2016, 7, 4916–4921.

29

Li, X. Y.; Liu, X. W.; Chevrier, D. M.; Qin, X.; Xie, X. J.; Song, S. Y.; Zhang, H. J.; Zhang, P.; Liu, X. G. Energy migration upconversion in manganese(Ⅱ)-doped nanoparticles. Angew. Chem., Int. Ed. 2015, 54, 13312–13317.

30

Ding, Y. D.; Wu, F.; Zhang, Y. L.; Liu, X. M.; de Jong, E. M. L. D.; Gregorkiewicz, T.; Hong, X.; Liu, Y. C.; Aalders, M. C. G.; Buma, W. J. et al. Interplay between static and dynamic energy transfer in biofunctional upconversion nanoplatforms. J. Phys. Chem. Lett. 2015, 6, 2518–2523.

31

Wang, F.; Liu, X. G. Multicolor tuning of lanthanide-doped nanoparticles by single wavelength excitation. Acc. Chem. Res. 2014, 47, 1378–1385.

32

Bünzli, J. C. G. Benefiting from the unique properties of lanthanide ions. Acc. Chem. Res. 2006, 39, 53–61.

33

Chen, Z. G.; Chen, H. L.; Hu, H.; Yu, M. X.; Li, F. Y.; Zhang, Q.; Zhou, Z. G.; Yi, T.; Huang, C. H. Versatile synthesis strategy for carboxylic acid-functionalized upconverting nanophosphors as biological labels. J. Am. Chem. Soc. 2008, 130, 3023–3029.

34

Zhang, F.; Wan, Y.; Yu, T.; Zhang, F. Q.; Shi, Y. F.; Xie, S. H.; Li, Y. G.; Xu, L.; Tu, B.; Zhao, D. Y. Uniform nanostructured arrays of sodium rare-earth fluorides for highly efficient multicolor upconversion luminescence. Angew. Chem., Int. Ed. 2007, 46, 7976–7979.

35

Li, Z. Q.; Zhang, Y. An efficient and user-friendly method for the synthesis of hexagonal-phase NaYF4: Yb, Er/Tm nanocrystals with controllable shape and upconversion fluorescence. Nanotechnology 2008, 19, 345606.

36

Wang, G. F.; Peng, Q.; Li, Y. D. Lanthanide-doped nanocrystals: Synthesis, optical-magnetic properties, and applications. Acc. Chem. Res. 2011, 44, 322–332.

37

Zhou, J.; Liu, Z.; Li, F. Y. Upconversion nanophosphors for small-animal imaging. Chem. Soc. Rev. 2012, 41, 1323–1349.

38

Zhang, Y. L.; Liu, X. H.; Lang, Y. B.; Yuan, Z.; Zhao, D.; Qin, G. S.; Qin, W. P. Synthesis of ultra-small BaLuF5: Yb3+, Er3+@BaLuF5: Yb3+ active-core-active-shell nanoparticles with enhanced up-conversion and down-conversion luminescence by a layer-by-layer strategy. J. Mater. Chem. C 2015, 3, 2045–2053.

39

Heer, S.; Kömpe, K.; Güdel, H. U.; Haase, M. Highly efficient multicolour upconversion emission in transparent colloids of lanthanide-doped NaYF4 nanocrystals. Adv. Mater. 2004, 16, 2102–2105.

40

Krämer, K. W.; Biner, D.; Frei, G.; Güdel, H. U.; Hehlen, M. P.; Lüthi, S. R. Hexagonal sodium yttrium fluoride based green and blue emitting upconversion phosphors. Chem. Mater. 2004, 16, 1244–1251.

41

Yi, G. S.; Chow, G. M. Synthesis of hexagonal-phase NaYF4: Yb, Er and NaYF4: Yb, Tm nanocrystals with efficient up-conversion fluorescence. Adv. Funct. Mater. 2006, 16, 2324–2329.

42

Ding, M. Y.; Chen, D. Q.; Yin, S. L.; Ji, Z. G.; Zhong, J. S.; Ni, Y.; Lu, C. H.; Xu, Z. Z. Simultaneous morphology manipulation and upconversion luminescence enhancement of β-NaYF4: Yb3+/Er3+ microcrystals by simply tuning the KF dosage. Sci. Rep. 2015, 5, 12745.

43

Liu, Q.; Sun, Y.; Yang, T. S.; Feng, W.; Li, C. G.; Li, F. Y. Sub-10 nm hexagonal lanthanide-doped NaLuF4 upconversion nanocrystals for sensitive bioimaging in vivo. J. Am. Chem. Soc. 2011, 133, 17122–17125.

44

Li, C. X.; Quan, Z. W.; Yang, P. P.; Huang, S. S.; Lian, H. Z.; Lin, J. Shape-controllable synthesis and upconversion properties of lutetium fluoride (doped with Yb3+/Er3+) microcrystals by hydrothermal process. J. Phys. Chem. C 2008, 112, 13395–13404.

45

Shi, F.; Wang, J. S.; Zhai, X. S.; Zhao, D.; Qin, W. P. Facile synthesis of β-NaLuF4: Yb/Tm hexagonal nanoplates with intense ultraviolet upconversion luminescence. CrystEngComm 2011, 13, 3782–3787.

46

Xiang, G. T.; Zhang, J. H.; Hao, Z. D.; Zhang, X.; Pan, G. -H.; Luo, Y. S.; Zhao, H. F. Decrease in particle size and enhancement of upconversion emission through Y3+ ions doping in hexagonal NaLuF4: Yb3+/Er3+ nanocrystals. CrystEngComm 2015, 17, 3103–3109.

47

Zheng, K. Z.; He, G. H.; Song, W. Y.; Bi, X. Q.; Qin, W. P. A strategy for enhancing the sensitivity of optical thermometers in β-NaLuF4: Yb3+/Er3+ nanocrystals. J. Mater. Chem. C 2015, 3, 11589–11594.

48

Zeng, J. H.; Su, J.; Li, Z. H.; Yan, R. X.; Li, Y. D. Synthesis and upconversion luminescence of hexagonal-phase NaYF4: Yb, Er3+ phosphors of controlled size and morphology. Adv. Mater. 2005, 17, 2119–2123.

49

Berry, M. T.; May, P. S. Disputed mechanism for NIR-to-red upconversion luminescence in NaYF4: Yb3+, Er3+. J. Phys. Chem. A 2015, 119, 9805–9811.

50

Lei, P. P.; Zhang, P.; Yuan, Q. H.; Wang, Z.; Dong, L. L.; Song, S. Y.; Xu, X.; Liu, X. L.; Feng, J.; Zhang, H. J. Yb3+/Er3+-codoped Bi2O3 nanospheres: probe for upconversion luminescence imaging and binary contrast agent for computed tomography imaging. ACS Appl. Mater. Interfaces 2015, 7, 26346–26354.

51

Liu, Y. S.; Tu, D. T.; Zhu, H. M.; Chen, X. Y. Lanthanide-doped luminescent nanoprobes: Controlled synthesis, optical spectroscopy, and bioapplications. Chem. Soc. Rev. 2013, 42, 6924–6958.

52

Xu, X.; Zhang, P.; Yuan, Q. H.; Lei, P. P.; Dong, L. L.; Wang, Z.; Liu, X. L.; Song, S. Y.; Feng, J.; Zhang, H. J. Dual-functional α-NaYb(Mn)F4: Er3+@NaLuF4 nanocrystals with highly enhanced red upconversion luminescence. RSC Adv. 2016, 6, 33493–33500.

53

Wang, Y.; Tu, L. P.; Zhao, J. W.; Sun, Y. J.; Kong, X. G.; Zhang, H. Upconversion luminescence of β-NaYF4: Yb3+, Er3+@β-NaYF4 core/shell nanoparticles: Excitation power, density and surface dependence. J. Phys. Chem. C 2009, 113, 7164–7169.

54

Li, X. M.; Wang, R.; Zhang, F.; Zhao, D. Y. Engineering homogeneous doping in single nanoparticle to enhance upconversion efficiency. Nano Lett. 2014, 14, 3634–3639.

55

Anderson, R. B.; Smith, S. J.; May, P. S.; Berry, M. T. Revisiting the NIR-to-visible upconversion mechanism in β-NaYF4: Yb3+, Er3+. J. Phys. Chem. Lett. 2014, 5, 36–42.

Nano Research
Pages 2104-2115
Cite this article:
Li L, Zhao N, Fu L, et al. Temperature modulation of concentration quenching in lanthanide-doped nanoparticles for enhanced upconversion luminescence. Nano Research, 2018, 11(4): 2104-2115. https://doi.org/10.1007/s12274-017-1828-4

639

Views

28

Crossref

N/A

Web of Science

26

Scopus

2

CSCD

Altmetrics

Received: 14 June 2017
Revised: 10 August 2017
Accepted: 29 August 2017
Published: 19 March 2018
© Tsinghua University Press and Springer-Verlag GmbH Germany 2017
Return