Graphical Abstract

Heteroatom dopants can greatly modify the electronic and physical properties and catalytic performance of gold nanoclusters. In this study, we investigate the catalytic activity of [Au25-x(PET)18-xM]NH3 (PET = 2-phenylethanethiolate, and M = Cu, Co, Ni, and Zn) nanoclusters in aerobic alcohol oxidation. The [Au25-x(PET)18-xM]NH3 nanoclusters are thoroughly characterized by matrix assisted laser desorption ionization (MALDI) mass spectrometry, X-ray photoelectron spectroscopy (XPS), Fourier transform infrared spectroscopy (FT-IR), and inductively coupled plasma–mass spectrometry (ICP-MS). The XPS analyses suggest that the transition metals strongly interact with the gold atoms of the nanoclusters. The CeO2-supported nanoclusters show catalytic activity, based on the conversion of benzyl alcohol, in the order, [Au25-x(PET)18-xNi] > [Au25-x(PET)18-xCu] > [Au25-x(PET)18-xZn] > [Au25-x(PET)18-xCo]. Regarding product selectivity, the [Au25-x(PET)18-xZn] and [Au25-x(PET)18-xCo] catalysts preferably yield benzaldehyde, [Au25-x(PET)18-xCu] yields benzaldehyde and benzyl acid, and [Au25-x(PET)18-xNi] yields benzyl acid. The exposed metal atoms are considered as the catalytic active sites. Also, the catalytic performance (including activity and selectivity) of the [Au25-x(PET)18-xM] catalysts is greatly turned and mediated by the transition metal type.
Schauermann, S.; Nilius, N.; Shaikhutdinov, S.; Freund, H. J. Nanoparticles for heterogeneous catalysis: New mechanistic insights. Acc. Chem. Res. 2013, 46, 1673–1681.
Taketoshi, A.; Haruta, M. Size- and structure-specificity in catalysis by gold clusters. Chem. Lett. 2014, 43, 380–387.
Wittstock, A.; Wichmann, A.; Bäumert, M. Nanoporous gold as a platform for a building block catalyst. ACS Catal. 2012, 27, 2199–2215.
Stratakis, M.; Garcia, H. Catalysis by supported gold nanoparticles: Beyond aerobic oxidative processes. Chem. Rev. 2012, 112, 4469–4506.
Yamazoe, S.; Koyasu, K.; Tsukuda, T. Nonscalable oxidation catalysis of gold clusters. Acc. Chem. Res. 2014, 47, 816–824.
Li, G.; Jin, R. C. Atomically precise gold nanoclusters as new model catalysts. Acc. Chem. Res. 2013, 46, 1749–1758.
Tyo, E. C.; Vajda, S. Catalysis by clusters with precise numbers of atoms. Nat. Nanotechnol. 2015, 10, 577–588.
Li, G.; Jin, R. C. Gold nanocluster-catalyzed semihydrogenation: A unique activation pathway for terminal alkynes. J. Am. Chem. Soc. 2014, 136, 11347–11354.
Yuan, X.; Goswami, N.; Mathews, L.; Yu, Y.; Xie, J. P. Enhancing stability through ligand-shell engineering: A case study with Au25(SR)18 nanoclusters. Nano Res. 2015, 8, 3488–3495.
Li, G.; Jiang, D. E.; Liu, C.; Yu, C. L.; Jin, R. C. Oxidesupported atomically precise gold nanocluster for catalyzing Sonogashira cross-coupling. J. Catal. 2013, 306, 177–183.
Liu, C.; Zhang, J. Y.; Huang, J. H.; Zhang, C. L.; Hong, F.; Zhou, Y.; Li, G.; Haruta, M. Efficient aerobic oxidation of glucose to gluconic acid over activated carbon-supported gold clusters. ChemSusChem 2017, 10, 1976–1980.
Jin, R. C.; Nobusada, K. Doping and alloying in atomically precise gold nanoparticles. Nano Res. 2014, 7, 285–300.
Yamazoe, S.; Kurashige, W.; Nobusada, K.; Negishi, Y.; Tsukuda, T. Preferential location of coinage metal dopants (M = Ag or Cu) in [Au25-xMx(SC2H4Ph)18]-(x-1) as determined by extended X-ray absorption fine structure and density functional theory calculations. J. Phys. Chem. C 2014, 118, 25284–25290.
Jiang, D. E.; Dai, S. From superatomic Au25(SR)- 18 to superatomic M@Au24(SR)18 q core-shell clusters. Inorg. Chem. 2009, 48, 2720–2722.
Mertens, P. G. N.; Vandezande, P.; Ye, X.; Poelman, H.; De Vos, D. E.; Vankelecom, I. F. J. Membrane-occluded goldpalladium nanoclusters as heterogeneous catalysts for the selective oxidation of alcohols to carbonyl compounds. Adv. Synth. Catal. 2008, 350, 1241–1247.
Kurashige, W.; Yamazoe, S.; Kanehira, K.; Tsukuda, T.; Negishi, Y. Selenolate-protected Au38 nanoclusters: Isolation and structural characterization. J. Phys. Chem. Lett. 2013, 4, 3181–3185.
Qian, H. F.; Jiang, D. E.; Li, G.; Gayathri, C.; Das, A.; Gil, R. R.; Jin, R. C. Monoplatinum doping of gold nanoclusters and catalytic application. J. Am. Chem. Soc. 2012, 134, 16159–16162.
Li, G.; Jin, R. C. Atomic level tuning of the catalytic properties: Doping effects of 25-atom bimetallic nanoclusters on styrene oxidation. Catal. Today 2016, 278, 187–191.
Li, W. L.; Liu, C.; Abroshan, H.; Ge, Q. J.; Yang, X. J.; Xu, H. Y.; Li, G. Catalytic CO oxidation using bimetallic MxAu25–x clusters: A combined experimental and computational study on doping effects. J. Phys. Chem. C 2016, 120, 10261–10267.
Li, G.; Abroshan, H.; Chen, Y. X.; Jin, R. C.; Kim, H. J. Experimental and mechanistic understanding of aldehyde hydrogenation using Au25 nanoclusters with lewis acids: Unique sites for catalytic reactions. J. Am. Chem. Soc. 2015, 137, 14295–14304.
Li, Y.; Shen, W. J. Morphology-dependent nanocatalysts: Rod-shaped oxides. Chem. Soc. Rev. 2014, 43, 1543–1574.
Tolman, C. A.; Riggs, W. M.; Linn, W. J.; King, C. M.; Wendt, R. C. Electron spectroscopy for chemical analysis of nickel compounds. Inorg. Chem. 1973, 12, 2770–2778.
Gaarenstroom, S. W.; Winograd, N. Initial and final state effects in the ESCA spectra of cadmium and silver oxides. J. Chem. Phys. 1977, 67, 3500–3506.
Seals, R. D.; Alexander, R.; Taylor, L. T.; Dillard, J. G. Core electron binding energy study of group IIb-VIIa compounds. Inorg. Chem. 1973, 12, 2485–2487.
Liu, C.; Abroshan, H.; Yan, C. Y.; Li, G.; Haruta, M. One-pot synthesis of Au11(PPh2Py)7Br3 for the highly chemoselective hydrogenation of nitrobenzaldehyde. ACS Catal. 2016, 6, 92–99.
Wu, Z. L.; Jiang, D. E.; Mann, A. K. P.; Mullins, D. R.; Qiao, Z. A.; Allard, L. F.; Zeng, C. J.; Jin, R. C.; Overbury, S. H. Thiolate ligands as a double-edged sword for CO oxidation on CeO2 supported Au25(SCH2CH2Ph)18 nanoclusters. J. Am. Chem. Soc. 2014, 136, 6111–6122.
Lopez-Acevedo, O.; Kacprzak, K. A.; Akola, J.; Häkkinen, H. Quantum size effects in ambient CO oxidation catalysed by ligand-protected gold clusters. Nat. Chem. 2010, 2, 329–334.
Abroshan, H.; Li, G.; Lin, J. Z.; Kim, H. J.; Jin, R. C. Molecular mechanism for the activation of Au25(SCH2CH2Ph)18 nanoclusters by imidazolium-based ionic liquids for catalysis. J. Catal. 2016, 337, 72–79.
Yoskamtorn, T.; Yamazoe, S.; Takahata, Y.; Nishigaki, J.; Thivasasith, A.; Limtrakul, J.; Tsukuda, T. Thiolate-mediated selectivity control in aerobic alcohol oxidation by porous carbon-supported Au25 clusters. ACS Catal. 2014, 4, 3696–3700.
Chen, Y. D.; Liu, C.; Abroshan, H.; Li, Z. M.; Wang, J.; Li, G.; Haruta, M. Phosphine/phenylacetylide-ligated Au clusters for multicomponent coupling reactions. J. Catal. 2016, 340, 287–294.
Robinson, R. D.; Spanier, J. E.; Zhang, F.; Chan, S. W.; Herman, I. P. Visible thermal emission from sub-band-gap laser excited cerium dioxide particles. J. Appl. Phys. 2002, 92, 1936–1941.
Pushkarev, V. V.; Kovalchuk, V. I.; d'Itri, J. L. Probing Defect sites on the CeO2 surface with dioxygen. J. Phys. Chem. B 2004, 108, 5341–5348.
Wu, Z. L.; Li, M. J.; Howe, J.; Meyer III, H. M.; Overbury, S. H. Probing defect sites on CeO2 nanocrystals with well-defined surface planes by Raman spectroscopy and O2 adsorption. Langmuir 2010, 26, 16595–16606.
Li, Y.; Shen, W. J. Morphology-dependent nanocatalysts: Rod-shaped oxides. Chem. Soc. Rev. 2014, 43, 1543–1574.