AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

6-inch uniform vertically-oriented graphene on soda-lime glass for photothermal applications

Haina Ci1,2Huaying Ren1,2Yue Qi1,2Xudong Chen1Zhaolong Chen1Jincan Zhang1,2Yanfeng Zhang1,3( )Zhongfan Liu1( )
Center for Nanochemistry (CNC)Beijing Science and Engineering Center for NanocarbonsCollege of Chemistry and Molecular EngineeringPeking UniversityBeijing100871China
Academy for Advanced Interdisciplinary StudiesPeking UniversityBeijing100871China
Department of Materials Science and EngineeringCollege of EngineeringPeking UniversityBeijing100871China
Show Author Information

Graphical Abstract

Abstract

Vertically-oriented graphene (VG) has many advantages over flat lying graphene, including a large surface area, exposed sharp edges, and non-stacking three-dimensional geometry. Recently, VG nanosheets assembled on specific substrates have been used for applications in supersensitive gas sensors and high-performance energy storage devices. However, to realize these intriguing applications, the direct growth of high-quality VG on a functional substrate is highly desired. Herein, we report the direct synthesis of VG nanosheets on traditional soda-lime glass due to its low-cost, good transparency, and compatibility with many applications encountered in daily life. This synthesis was achieved by a direct-current plasma enhanced chemical vapor deposition (dc-PECVD) route at 580 ℃, which is right below the softening point of the glass, and featured a scale-up size ~6 inches. Particularly, the fabricated VG nanosheets/glass hybrid materials at a transmittance range of 97%–34% exhibited excellent solarthermal performances, reflected by a 70%–130% increase in the surface temperature under simulated sunlight irradiation. We believe that this graphene glass hybrid material has great potential for use in future transparent "green-warmth" construction materials.

Electronic Supplementary Material

Download File(s)
12274_2017_1839_MOESM1_ESM.pdf (1.9 MB)

References

1

Novoselov, K. S.; Geim, A. K.; Morozov, S. V.; Jiang, D.; Zhang, Y.; Dubonos, S. V.; Grigorieva, I. V.; Firsov, A. A. Electric field effect in atomically thin carbon films. Science 2004, 306, 666–669.

2

Novoselov, K. S.; Geim, A. K.; Morozov, S. V.; Jiang, D.; Katsnelson, M. I.; Grigorieva, I. V.; Dubonos, S. V.; Firsov, A. A. Two-dimensional gas of massless Dirac fermions in graphene. Nature 2005, 438, 197–200.

3

Geim, A. K.; Novoselov, K. S. The rise of graphene. Nat. Mater. 2007, 6, 183–191.

4

Novoselov, K. S.; Fal'ko, V. I.; Colombo, L.; Gellert, P. R.; Schwab, M. G.; Kim, K. A roadmap for graphene. Nature 2012, 490, 192–200.

5

Sun, J. Y.; Chen, Y. B.; Priydarshi, M. K.; Chen, Z.; Bachmatiuk, A.; Zou, Z. Y.; Chen, Z. L.; Song, X. J.; Gao, Y. F.; Rümmeli, M. H. et al. Direct chemical vapor deposition-derived graphene glasses targeting wide ranged applications. Nano Lett. 2015, 15, 5846–5854.

6

Chen, Y. B.; Sun, J. Y.; Gao, J. F.; Du, F.; Han, Q.; Nie, Y. F.; Chen, Z. L.; Bachmatiuk, A.; Priydarshi, M. K.; Ma, D. L. et al. Growing uniform graphene disks and films on molten glass for heating devices and cell culture. Adv. Mater. 2015, 27, 7839–7846.

7

Sun, J. Y.; Chen, Y. B.; Cai, X.; Ma, B. J.; Chen, Z. L.; Priydarshi, M. K.; Chen, K.; Gao, T.; Song, X. J.; Ji, Q. Q. et al. Direct low-temperature synthesis of graphene on various glasses by plasma-enhanced chemical vapor deposition for versatile, cost-effective electrodes. Nano Res. 2015, 8, 3496–3504.

8

Sun, J. Y.; Chen, Z. L.; Yuan, L.; Chen, Y. B.; Ning, J.; Liu, S. W.; Ma, D. L.; Song, X. J.; Priydarshi, M. K.; Bachmatiuk, A. et al. Direct chemical-vapor-deposition-fabricated, large-scale graphene glass with high carrier mobility and uniformity for touch panel applications. ACS Nano 2016, 10, 11136– 11144.

9

Chen, X. D.; Chen, Z. L.; Jiang, W. S.; Zhang, C. H.; Sun, J. Y.; Wang, H. H.; Xin, W.; Lin, L.; Priydarshi, M. K.; Yang, H. et al. Fast growth and broad applications of 25-inch uniform graphene glass. Adv. Mater. 2017, 29, 1603428.

10

Miller, J. R.; Outlaw, R. A.; Holloway, B. C. Graphene double-layer capacitor with ac line-filtering performance. Science 2010, 329, 1637–1639.

11

Yu, K. H.; Bo, Z.; Lu, G. H.; Mao, S.; Cui, S. M.; Zhu, Y. W.; Chen, X. Q.; Ruoff, R. S.; Chen, J. H. Growth of carbon nanowalls at atmospheric pressure for one-step gas sensor fabrication. Nanoscale Res. Lett. 2011, 6, 202.

12

Soin, N.; Roy, S. S.; Lim, T. H.; McLaughlin, J. A. D. Microstructural and electrochemical properties of vertically aligned few layered graphene (FLG) nanoflakes and their application in methanol oxidation. Mater. Chem. Phys. 2011, 129, 1051–1057.

13

Shang, N. G.; Papakonstantinou, P.; McMullan, M.; Chu, M.; Stamboulis, A.; Potenza, A.; Dhesi, S. S.; Marchetto, H. Catalyst-free efficient growth, orientation and biosensing properties of multilayer graphene nanoflake films with sharp edge planes. Adv. Funct. Mater. 2008, 18, 3506–3514.

14

Yang, C. Y.; Bi, H.; Wan, D. Y.; Huang, F. Q.; Xie, X. M.; Jiang, M. H. Direct PECVD growth of vertically erected graphene walls on dielectric substrates as excellent multifunctional electrodes. J. Mater. Chem. A 2013, 1, 770–775.

15

Wu, Y.; Qiao, P.; Chong, T.; Shen, Z. Carbon nanowalls grown by microwave plasma enhanced chemical vapor deposition. Adv. Mater. 2002, 14, 64–67.

16

Wang, J. J.; Zhu, M. Y.; Outlaw, R. A.; Zhao, X.; Manos, D. M.; Holloway, B. C. Synthesis of carbon nanosheets by inductively coupled radio-frequency plasma enhanced chemical vapor deposition. Carbon 2004, 42, 2867–2872.

17

Liu, W. H.; Dang, T.; Xiao, Z. H.; Li, X.; Zhu, C. C.; Wang, X. L. Carbon nanosheets with catalyst-induced wrinkles formed by plasma-enhanced chemical-vapor deposition. Carbon 2011, 49, 884–889.

18

Ma, Y. F.; Jang, H.; Kim, S. J.; Pang, C.; Chae, H. Copper-assisted direct growth of vertical graphene nanosheets on glass substrates by low-temperature plasma-enhanced chemical vapour deposition process. Nanoscale Res. Lett. 2015, 10, 308.

19

Bo, Z.; Yu, K. H.; Lu, G. H.; Wang, P. X.; Mao, S.; Chen, J. H. Understanding growth of carbon nanowalls at atmospheric pressure using normal glow discharge plasma-enhanced chemical vapor deposition. Carbon 2011, 49, 1849–1858.

20

Obraztsov, A. N.; Zolotukhin, A. A.; Ustinov, A. O.; Volkov, A. P.; Svirko, Y.; Jefimovs, K. DC discharge plasma studies for nanostructured carbon CVD. Diamond Relat. Mater. 2003, 12, 917–920.

21

Zhao, J.; Shaygan, M.; Eckert, J.; Meyyappan, M.; Rummeli, M. H. A growth mechanism for free-standing vertical graphene. Nano Lett. 2014, 14, 3064–3071.

22

Louchev, O. A.; Sato, Y.; Kanda, H. Growth mechanism of carbon nanotube forests by chemical vapor deposition. Appl. Phys. Lett. 2002, 80, 2752–2754.

23

Wu, Y. H.; Yang, B. J. Effects of localized electric field on the growth of carbon nanowalls. Nano Lett. 2002, 2, 355–359.

24

Wu, Y. H.; Yang, B. J.; Zong, B. Y.; Sun, H.; Shen, Z. X.; Feng, Y. P. Carbon nanowalls and related materials. J. Mater. Chem. 2004, 14, 469–477.

25

Zhu, M. Y.; Wang, J. J.; Holloway, B. C.; Outlaw, R. A.; Zhao, X.; Hou, K.; Shutthanandan, V.; Manos, D. M. A mechanism for carbon nanosheet formation. Carbon 2007, 45, 2229–2234.

26

Ni, Z. H.; Fan, H. M.; Feng, Y. P.; Shen, Z. X.; Yang, B. J.; Wu, Y. H. Raman spectroscopic investigation of carbon nanowalls. J. Chem. Phys. 2006, 124, 204703.

27

Bo, Z.; Yang, Y.; Chen, J. H.; Yu, K. H.; Yan, J. H.; Cen, K. F. Plasma-enhanced chemical vapor deposition synthesis of vertically oriented graphene nanosheets. Nanoscale 2013, 5, 5180–5204.

28

Bae, K.; Kang, G. M.; Cho, S. K.; Park, W.; Kim, K.; Padilla, W. J. Flexible thin-film black gold membranes with ultrabroadband plasmonic nanofocusing for efficient solar vapour generation. Nat. Commun. 2015, 6, 10103.

29

Raut, H. K.; Ganesh, V. A.; Nair, A. S.; Ramakrishna, S. Anti-reflective coatings: A critical, in-depth review. Energy Environ. Sci. 2011, 4, 3779–3804.

30

Hoch, L. B.; O'Brien, P. G.; Jelle, A.; Sandhel, A.; Perovic, D. D.; Mims, C. A.; Ozin, G. A. Nanostructured indium oxide coated silicon nanowire arrays: A hybrid photothermal/ photochemical approach to solar fuels. ACS Nano 2016, 10, 9017–9025.

Nano Research
Pages 3106-3115
Cite this article:
Ci H, Ren H, Qi Y, et al. 6-inch uniform vertically-oriented graphene on soda-lime glass for photothermal applications. Nano Research, 2018, 11(6): 3106-3115. https://doi.org/10.1007/s12274-017-1839-1
Part of a topical collection:

681

Views

60

Crossref

N/A

Web of Science

65

Scopus

2

CSCD

Altmetrics

Received: 13 June 2017
Revised: 21 August 2017
Accepted: 01 September 2017
Published: 22 May 2018
© Tsinghua University Press and Springer-Verlag GmbH Germany 2017
Return