AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Grain boundaries modulating active sites in RhCo porous nanospheres for efficient CO2 hydrogenation

Xusheng Zheng1,§( )Yue Lin2,§Haibin Pan1Lihui Wu1Wei Zhang1Linlin Cao1Jing Zhang3Lirong Zheng3Tao Yao1( )
National Synchrotron Radiation LaboratoryUniversity of Science and Technology of ChinaHefei230029China
Hefei National Laboratory for Physical Sciences at the MicroscaleUniversity of Science and Technology of ChinaHefei230026China
Beijing Synchrotron Radiation FacilityInstitute of High Energy PhysicsChinese Academy of SciencesBeijing100049China

§Xusheng Zheng and Yue Lin contributed equally to this work.

Show Author Information

Graphical Abstract

Abstract

Designing active sites and engineering electronic properties of heterogeneous catalysts are both promising strategies that can be employed to enhance the catalytic activity for CO2 hydrogenation. Herein, we report RhCo porous nanospheres with a high density of accessible grain boundaries as active sites for improved catalytic performance in the hydrogenation of CO2 to methanol. The porous nanosphere morphological feature allows for a high population of grain boundaries to be accessible to the reactants, thereby providing sufficient active sites for the catalytic reaction. Moreover, in-situ X-ray photoelectron spectroscope (XPS) results revealed the creation of negatively charged Rh surface atoms that promoted the activation of CO2 to generate CO2δ and methoxy intermediates. The obtained RhCo porous nanospheres exhibited remarkable low-temperature catalytic activity with a turnover frequency (TOFRh) of 612 h–1, which was 6.1 and 2.5 times higher than that of Rh/C and RhCo nanoparticles, respectively. This work not only develops an efficient catalyst for CO2 hydrogenation, but also demonstrates a potential approach for the modulation of active sites and electronic properties.

Electronic Supplementary Material

Download File(s)
12274_2017_1841_MOESM1_ESM.pdf (3.6 MB)

References

1

Qiao, J. L.; Liu, Y. Y.; Hong, F.; Zhang, J. J. A review of catalysts for the electroreduction of carbon dioxide to produce low-carbon fuels. Chem. Soc. Rev. 2014, 43, 631–675.

2

Ozin, G. A. Throwing new light on the reduction of CO2. Adv. Mater. 2015, 27, 1957–1963.

3

Calaza, F.; Stiehler, C.; Fujimori, Y.; Sterrer, M.; Beeg, S.; Ruiz-Oses, M.; Nilius, N.; Heyde, M.; Parviainen, T.; Honkala, K. et al. Carbon dioxide activation and reaction induced by electron transfer at an oxide-metal interface. Angew. Chem., Int. Ed. 2015, 54, 12484–12487.

4

Rezayee, N. M.; Huff, C. A.; Sanford, M. S. Tandem amine and ruthenium-catalyzed hydrogenation of CO2 to methanol. J. Am. Chem. Soc. 2015, 137, 1028–1031.

5

Beller, M.; Bornscheuer, U. T. CO2 fixation through hydrogenation by chemical or enzymatic methods. Angew. Chem., Int. Ed. 2014, 53, 4527–4528.

6

Yang, X. F.; Kattel, S.; Senanayake, S. D.; Boscoboinik, J. A.; Nie, X. W.; Graciani, J.; Rodriguez, J. A.; Liu, P.; Stacchiola, D. J.; Chen, J. G. Low pressure CO2 hydrogenation to methanol over gold nanoparticles activated on a CeOx/TiO2 interface. J. Am. Chem. Soc. 2015, 137, 10104-10107.

7

Spencer, M. S. The role of zinc oxide in Cu/ZnO catalysts for methanol synthesis and the water-gas shift reaction. Top. Catal. 1999, 8, 259.

8

Studt, F.; Sharafutdinov, I.; Abild-Pedersen, F.; Elkjær, C. F.; Hummelshøj, J. S.; Dahl, S.; Chorkendorff, I.; Nørskov, J. K. Discovery of a Ni-Ga catalyst for carbon dioxide reduction to methanol. Nat. Chem. 2014, 6, 320–324.

9

Graciani, J.; Mudiyanselage, K.; Xu, F.; Baber, A. E.; Evans, J.; Senanayake, S. D.; Stacchiola, D. J.; Liu, P.; Hrbek, J.; Sanz, J. F. et al. Highly active copper-ceria and copper-ceria-titania catalysts for methanol synthesis from CO2. Science 2014, 345, 546–550.

10

Khan, M. U.; Wang, L. B.; Liu, Z.; Gao, Z. H.; Wang, S. P.; Li, H. L.; Zhang, W. B.; Wang, M. L.; Wang, Z. F.; Ma, C. et al. Pt3Co octapods as superior catalysts of CO2 hydrogenation. Angew. Chem., Int. Ed. 2016, 55, 9548–9552.

11

Huang, X. Q.; Zhao, Z. P.; Chen, Y.; Chiu, C. Y.; Ruan, L. Y.; Liu, Y.; Li, M. F.; Duan, X. F.; Huang, Y. High density catalytic hot spots in ultrafine wavy nanowires. Nano Lett. 2014, 14, 3887–3894.

12

Wang, L. B.; Zhao, S. T.; Liu, C. X.; Li, C.; Li, X.; Li, H. L.; Wang, Y. C.; Ma, C.; Li, Z. Y.; Zeng, J. Aerobic oxidation of cyclohexane on catalysts based on twinned and single- crystal Au75Pd25 bimetallic nanocrystals. Nano Lett. 2015, 15, 2875–2880.

13

Bucur, R. V.; Indrea, E. Influence of the crystalline microstructure on the diffusivity of hydrogen in palladium galvanostatic permeation and X-ray diffraction measurements. Acta Metall. 1987, 35, 1325–1332.

14

Maier, J. Defect chemistry: Composition, transport, and reactions in the solid state; part Ⅰ: Thermodynamics. Angew. Chem., Int. Ed. 1993, 32, 313–335.

15

Maier, J. Defect chemistry: Composition, transport, and reactions in the solid state; part Ⅱ: Kinetics. Angew. Chem., Int. Ed. 1993, 32, 528–542.

16

Kuo, C. H.; Lamontagne, L. K.; Brodsky, C. N.; Chou, L. Y.; Zhuang, J.; Sneed, B. T.; Sheehan, M. K.; Tsung, C. K. The effect of lattice strain on the catalytic properties of Pd nanocrystals. ChemSusChem 2013, 6, 1993–2000.

17

He, R.; Wang, Y. C.; Wang, X. Y.; Wang, Z. T.; Liu, G.; Zhou, W.; Wen, L. P.; Li, Q. X.; Wang, X. P.; Chen, X. Y. et al. Facile synthesis of pentacle gold-copper alloy nanocrystals and their plasmonic and catalytic properties. Nat. Commun. 2014, 5, 4327.

18

Sneed, B. T.; Brodsky, C. N.; Kuo, C. H.; Lamontagne, L. K.; Jiang, Y.; Wang, Y.; Tao, F.; Huang, W. X.; Tsung, C. K. Nanoscale-phase-separated Pd-Rh boxes synthesized via metal migration: An archetype for studying lattice strain and composition effects in electrocatalysis. J. Am. Chem. Soc. 2013, 135, 14691–14700.

19

Wang, M. L.; Wang, L. B.; Li, H. L.; Du, W. P.; Khan, M. U.; Zhao, S. T.; Ma, C.; Li, Z. Y.; Zeng, J. Ratio-controlled synthesis of CuNi octahedra and nanocubes with enhanced catalytic activity. J. Am. Chem. Soc. 2015, 137, 14027–14030.

20

Wang, L. B.; Wang, Y. C.; Guo, H. Y.; Huang, J. L.; Zhao, Y. L.; Liu, Q. Y.; Wu, X. J.; Zeng, J. Au-Pd alloy octapods with high electrocatalytic activity for the oxidation of formic acid. Part. Part. Syst. Charact. 2015, 32, 295–300.

21

Li, Y. W.; Chan, S. H.; Sun, Q. Heterogeneous catalytic conversion of CO2: A comprehensive theoretical review. Nanoscale 2015, 7, 8663–8683.

22

Pacansky, J.; Wahlgren, U.; Bagus, P. S. SCF ab-initio ground-state energy surfaces for CO2 and CO2. J. Chem. Phys. 1975, 62, 2740–2744.

23

Dietz, L.; Piccinin, S.; Maestri, M. Mechanistic insights into CO2 activation via reverse water-gas shift on metal surfaces. J. Phys. Chem. C 2015, 119, 4959–4966.

24

Solymosi, F. The bonding, structure and reactions of CO2 adsorbed on clean and promoted metal surfaces. J. Mol. Catal. 1991, 65, 337–358.

25

Freund, H. J.; Roberts, M. W. Surface chemistry of carbon dioxide. Surf. Sci. Rep. 1996, 25, 225–273.

26

Compton, R. N.; Reinhardt, P. W.; Cooper, C. D. Collisional ionization of Na, K, and Cs by CO2, COS, and CS2: Molecular electron affinities. J. Chem. Phys. 1975, 63, 3821–3827.

27

Sommerfeld, T.; Meyer, H. D.; Cederbaum, L. S. Potential energy surface of the CO2 anion. Phys. Chem. Chem. Phys. 2004, 6, 42–45.

28

Mudiyanselage, K.; Senanayake, S. D.; Feria, L.; Kundu, S.; Baber, A. E.; Graciani, J.; Vidal, A. B.; Agnoli, S.; Evans, J.; Chang, R. et al. Importance of the metal-oxide interface in catalysis: In situ studies of the water-gas shift reaction by ambient-pressure X-ray photoelectron spectroscopy. Angew. Chem., Int. Ed. 2013, 52, 5101–5105.

29

Seiferth, O.; Wolter, K.; Dillmann, B.; Klivenyi, G.; Freund, H. J.; Scarano, D.; Zecchina, A. IR investigations of CO2 adsorption on chromia surfaces: Cr2O3 (0001)/Cr(110) versus polycrystalline α-Cr2O3. Surf. Sci. 1999, 421, 176–190.

30

Arena, F.; Barbera, K.; Italiano, G.; Bonura, G.; Spadaro, L.; Frusteri, F. Synthesis, characterization and activity pattern of Cu–ZnO/ZrO2 catalysts in the hydrogenation of carbon dioxide to methanol. J. Catal. 2007, 249, 185–194.

31

Zhang, H. B.; Liang, X. L.; Dong, X.; Li, H. Y.; Lin, G. D. Multi-walled carbon nanotubes as a novel promoter of catalysts for CO/CO2 hydrogenation to alcohols. Catal. Surv. Asia 2009, 13, 41–58.

32

Tanaka, R.; Yamashita, M.; Nozaki, K. Catalytic hydrogenation of carbon dioxide using Ir(Ⅲ)−pincer complexes. J. Am. Chem. Soc. 2009, 131, 14168–14169.

33

Jadhav, S. G.; Vaidya, P. D.; Bhanage, B. M.; Joshi, J. B. Catalytic carbon dioxide hydrogenation to methanol: A review of recent studies. Chem. Eng. Res. Des. 2014, 92, 2557–2567.

Nano Research
Pages 2357-2365
Cite this article:
Zheng X, Lin Y, Pan H, et al. Grain boundaries modulating active sites in RhCo porous nanospheres for efficient CO2 hydrogenation. Nano Research, 2018, 11(5): 2357-2365. https://doi.org/10.1007/s12274-017-1841-7

709

Views

21

Crossref

N/A

Web of Science

21

Scopus

1

CSCD

Altmetrics

Received: 02 May 2017
Revised: 03 September 2017
Accepted: 04 September 2017
Published: 12 May 2018
© Tsinghua University Press and Springer‐Verlag GmbH Germany 2017
Return