Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
In the study of the fabrication of DNA-templated silver nanoclusters (DNA-Ag NCs), how templates affect the fluorescence of the nanoclusters remains unclear, and it has been a challenge to understand the correlation between the properties of the DNA template and the Ag NCs. In this respect, based on the rational design of a series of structurally defined intramolecular G-quadruplexes, we prepared G-quadruplex-templated Ag NCs with a defined G-tetrad-to-silver ratio of 1:2. We evaluated the effect of G-quadruplex topology and loop sequences on the fluorescence of DNA-Ag NCs using circular dichroism, and extinction and emission spectroscopy. G-quadruplex templates with an anti-parallel topology were found to produce Ag NCs with stronger fluorescence compared with parallel and hybrid configurations. Loop bases adjacent to G-tetrads have a more significant impact on the fluorescence of Ag NCs compared with those in the middle of the loop, with adenine largely exhibiting an enhancement effect and thymine being detrimental. Generally, G-quadruplexes having an anti-parallel topology with adenine in the loop adjacent to the G-tetrad would be good templates for producing highly fluorescent Ag NCs. This is the first study to focus on the correlation between G-quadruplex topology/sequence and the optical properties of Ag NCs. We hope that the results of this study will facilitate a more in-depth understanding of correlation between G-quadruplex templates and Ag NCs, and help to understand and utilize their unique attributes.
Zheng, J.; Nicovich, P. R.; Dickson, R. M. Highly fluorescent noble-metal quantum dots. Annu. Rev. Phys. Chem. 2007, 58, 409–431.
Díez, I.; Ras, R. H. A. Fluorescent silver nanoclusters. Nanoscale 2011, 3, 1963–1970.
Shang, L.; Dong, S. J.; Nienhaus, G. U. Ultra-small fluorescent metal nanoclusters: Synthesis and biological applications. Nanotoday 2011, 6, 401–418.
Qian, H. F.; Zhu, M. Z.; Wu, Z. K.; Jin, R. C. Quantum sized gold nanoclusters with atomic precision. Acc. Chem. Res. 2012, 45, 1470–1479.
Obliosca, J. M.; Liu, C.; Yeh, H. C. Fluorescent silver nanoclusters as DNA probes. Nanoscale 2013, 5, 8443–8461.
Vosch, T.; Antoku, Y.; Hsiang, J. C.; Richards, C. I.; Gonzalez, J. I.; Dickson, R. M. Strongly emissive individual DNA-encapsulated Ag nanoclusters as single-molecule fluorophores. Proc. Natl. Acad. Sci. USA 2007, 104, 12616– 12621.
Gwinn, E. G.; O'Neill, P.; Guerrero, A. J.; Bouwmeester, D.; Fygenson, D. K. Sequence-dependent fluorescence of DNA-hosted silver nanoclusters. Adv. Mater. 2008, 20, 279–283.
Richards, C. I.; Choi, S.; Hsiang, J.C.; Antoku, Y.; Vosch, T.; Bongiorno, A.; Tzeng, Y. L.; Dickson, R. M. Oligonucleotide- stabilized Ag nanocluster fluorophores. J. Am. Chem. Soc. 2008, 130, 5038–5039.
Guo, W. W.; Yuan, J. P.; Dong, Q. Z.; Wang, E. K. Highly sequence-dependent formation of fluorescent silver nanoclusters in hybridized DNA duplexes for single nucleotide mutation identification. J. Am. Chem. Soc. 2010, 132, 932–934.
Lan, G. Y.; Huang, C. C.; Chang, H. T. Silver nanoclusters as fluorescent probes for selective and sensitive detection of copper ions. Chem. Commun. 2010, 46, 1257–1259.
Yeh, H. C.; Sharma, J.; Han, J. J.; Martinez, J. S.; Werner, J. H. A DNA-silver nanocluster probe that fluoresces upon hybridization. Nano Lett. 2010, 10, 3106–3110.
Li, T.; Zhang, L. B.; Ai, J.; Dong, S. J.; Wang, E. K. Ion- tuned DNA/Ag fluorescent nanoclusters as versatile logic device. Acs Nano 2011, 5, 6334–6338.
Li, J. J.; Zhong, X. Q.; Zhang, H. Q.; Le, X. C.; Zhu, J. J. Binding-induced fluorescence turn-on assay using aptamer- functionalized silver nanocluster DNA probes. Anal. Chem. 2012, 84, 5170–5174.
Liu, X. Q.; Wang, F.; Aizen, R.; Yehezkeli, O.; Willner, I. Graphene oxide/nucleic-acid-stabilized silver nanoclusters: Functional hybrid materials for optical aptamer sensing and multiplexed analysis of pathogenic DNAs. J. Am. Chem. Soc. 2013, 135, 11832–11839.
Liu, J. W. DNA-stabilized, fluorescent, metal nanoclusters for biosensor development. TrACTrend. Anal. Chem. 2014, 58, 99–111.
Gwinn, E.; Schultz, D.; Copp, S. M.; Swasey, S. DNA- protected silver clusters for nanophotonics. Nanomaterials 2015, 5, 180–207.
Shao, C. Y.; Yuan, B.; Wang, H. Q.; Zhou, Q.; Li, Y. L.; Guan, Y. F.; Deng, Z. X. Eggshell membrane as a multimodal solid state platform for generating fluorescent metal nanoclusters. J. Mater. Chem. 2011, 21, 2863–2866.
Copp, S. M.; Bogdanov, P.; Debord, M.; Singh, A.; Gwinn, E. Base motif recognition and design of DNA templates for fluorescent silver clusters by machine learning. Adv. Mater. 2014, 26, 5839–5845.
Copp, S. M.; Schultz, D.; Swasey, S.; Pavlovich, J.; Debord, M.; Chiu, A.; Olsson, K.; Gwinn, E. Magic numbers in DNA-stabilized fluorescent silver clusters lead to magic colors. J. Phys. Chem. Lett. 2014, 5, 959–963.
Petty, J. T.; Zheng, J.; Hud, N. V.; Dickson, R. M. DNA- templated Ag nanocluster formation. J. Am. Chem. Soc. 2004, 126, 5207–5212.
Ritchie, C. M.; Johnsen, K. R.; Kiser, J. R.; Antoku, Y.; Dickson, R. M.; Petty, J. T. Ag nanocluster formation using a cytosine oligonucleotide template. J. Phys. Chem. C 2007, 111, 175–181.
Sengupta, B.; Springer, K.; Buckman, J. G.; Story, S. P.; Abe, O. H.; Hasan, Z. W.; Prudowsky, Z. D.; Rudisill, S. E.; Degtyareva, N. N.; Petty, J. T. DNA templates for fluorescent silver clusters and I-motif folding. J. Phys. Chem. C 2009, 113, 19518–19524.
Ai, J.; Guo, W. W.; Li, B. L.; Li, T.; Li, D.; Wang, E. K. DNA G-quadruplex-templated formation of the fluorescent silver nanocluster and its application to bioimaging. Talanta 2012, 88, 450–455.
Neidig, M. L.; Sharma, J.; Yeh, H. C.; Martinez, J. S.; Conradson, S. D.; Shreve, A. P. Ag K-Edge EXAFS analysis of DNA-templated fluorescent silver nanoclusters: Insight into the structural origins of emission tuning by DNA sequence variations. J. Am. Chem. Soc. 2011, 133, 11837–11839.
Petty, J. T.; Sergev, O. O.; Ganguly, M.; Rankine, I. J.; Chevrier, D. M.; Zhang, P. A segregated, partially oxidized, and compact Ag10 cluster within an encapsulating DNA host. J. Am. Chem. Soc. 2016, 138, 3469–3477.
Schultz, D.; Gwinn, E. G. Silver atom and strand numbers in fluorescent and dark Ag: DNAs. Chem. Commun. 2012, 48, 5748–5750.
Schultz, D.; Gardner, K.; Oemrawsingh, S. S. R.; Markešević, N.; Olsson, K.; Debord, M.; Bouwmeester, D.; Gwinn, E. Evidence for rod-shaped DNA-stabilized silver nanocluster emitters. Adv. Mater. 2013, 25, 2797–2803.
O'Neill, P. R.; Velazquez, L. R.; Dunn, D. G.; Gwinn, E. G.; Fygenson, D. K. Hairpins with poly-C loops stabilize four types of fluorescent Agn: DNA. J. Phys. Chem. C 2009, 113, 4229–4233.
Morishita, K.; MacLean, J. L.; Liu, B. W.; Jiang, H.; Liu, J. W. Correlation of photobleaching, oxidation and metal induced fluorescence quenching of DNA-templated silver nanoclusters. Nanoscale 2013, 5, 2840–2849.
Li, J.; Jia, X. F.; Li, D. Y.; Ren, J. T.; Han, Y. C.; Xia, Y.; Wang, E. K. Stem-directed growth of highly fluorescent silver nanoclusters for versatile logic devices. Nanoscale 2013, 5, 6131–6138.
Lan, G. Y.; Chen, W. Y.; Chang, H. T. Control of synthesis and optical properties of DNA templated silver nanoclusters by varying DNA length and sequence. RSC Adv. 2011, 1, 802–807.
Feng, L. Y.; Huang, Z. Z.; Ren, J. S.; Qu, X. G. Toward site- specific, homogeneous and highly stable fluorescent silver nanoclusters fabrication on triplex DNA scaffolds. Nucleic Acids. Res. 2012, 40, e122.
Weadick, D. S.; Liu, J. W. Phosphorothioate DNA stabilized fluorescent gold and silver nanoclusters. Nanomaterials 2015, 5, 804–813.
Walczak, S.; Morishita, K.; Ahmed, M.; Liu, J. W. Towards understanding of poly-guanine activated fluorescent silver nanoclusters. Nanotechnology 2014, 25, 155501.
Li, T. T.; He, N. Y.; Wang, J. H.; Li, S.; Deng, Y.; Wang, Z. L. Effects of the i-motif DNA loop on the fluorescence of silver nanoclusters. RSC Adv. 2016, 6, 22839–22844.
Burge, S.; Parkinson, G. N.; Hazel, P.; Todd, A. K.; Neidle, S. Quadruplex DNA: Sequence, topology and structure. Nucleic Acids. Res. 2006, 34, 5402–5415.
Ma, D. L.; Che, C. M.; Yan, S. C. Platinum(Ⅱ) complexes with dipyridophenazine ligands as human telomerase inhibitors and luminescent probes for G-quadruplex DNA. J. Am. Chem. Soc. 2009, 131, 1835–1846.
Lu, L. H.; Chan, D. S.H.; Kwong, D. W. J.; He, H. Z.; Leung, C. H.; Ma, D. L. Detection of nicking endonuclease activity using a G-quadruplex-selective luminescent switch-on probe. Chem. Sci. 2014, 5, 4561–4568.
Wang, M. D.; Mao, Z. F.; Kang, T. S.; Wong, C. Y.; Mergny, J. L.; Leung, C. H.; Ma, D. L. Conjugating a groove- binding motif to an Ir(Ⅲ) complex for the enhancement of G-quadruplex probe behavior. Chem. Sci. 2016, 7, 2516–2523.
Berti, L.; Burley, G. A. Nucleic acid and nucleotide-mediated synthesis of inorganic nanoparticles. Nat. Nanotechnol. 2008, 3, 81–87.
Swasey, S. M.; Leal, L. E.; Lopez-Acevedo, O.; Pavlovich, J.; Gwinn, E. G. Silver (Ⅰ) as DNA glue: Ag+-mediated guanine pairing revealed by removing Watson-Crick constraints. Sci. Rep. 2015, 5, 10163.
Fu, Y.; Zhang, J. L.; Chen, X. F.; Huang, T. T.; Duan, X. L.; Li, W.; Wang, J. K. Silver nanomaterials regulated by structural competition of G-/C-rich oligonucleotides. J. Phys. Chem. C 2011, 115, 10370–10379.
Lee, H. M.; Chan, D. S. H.; Yang, F.; Lam, H. Y.; Yan, S. C.; Che, C. M.; Ma, D. L.; Leung, C. H. Identification of natural product Fonsecin B as a stabilizing ligand of c-myc G-quadruplex DNA by high-throughput virtual screening. Chem. Commun. 2010, 46, 4680–4682.
Yang, X.; Gan, L. F.; Han, L.; Wang, E. K.; Wang, J. High-yield synthesis of silver nanoclusters protected by DNA monomers and DFT prediction of their photoluminescence properties. Angew. Chem., Int. Ed. 2013, 52, 2022–2026.
Hazel, P.; Huppert, J.; Balasubramanian, S.; Neidle, S. Loop-length-dependent folding of G-quadruplexes. J. Am. Chem. Soc. 2004, 126, 16405–16415.
Bugaut, A.; Balasubramanian, S. A sequence-independent study of the influence of short loop lengths on the stability and topology of intramolecular DNA G-quadruplexes. Biochemistry 2008, 47, 689–697.
Smargiasso, N.; Rosu, F.; Hsia, W.; Colson, P.; Baker, E. S.; Bowers, M. T.; Pauw, E. D.; Gabelica, V. G-quadruplex DNA assemblies: Loop length, cation identity, and multimer formation. J. Am. Chem. Soc. 2008, 130, 10208–10216.
Guédin, A.; Gros, J.; Alberti, P.; Mergny, J. L. How long is too long? Effects of loop size on G-quadruplex stability. Nucleic Acids. Res. 2010, 38, 7858–7868.
Soto-Verdugo, V.; Metiu, H.; Gwinn, E. The properties of small Ag clusters bound to DNA bases. J. Chem. Phys. 2010, 132, 195102.
Lin, R. Y.; Tao, G. Y.; Chen, Y.; Chen, M. X.; Liu, F.; Li, N. Constructing a robust fluorescent DNA-stabilized silver nanocluster probe module by attaching a duplex moiety. Chem. —Eur. J. 2017, 23, 10893–10900.
Sharma, J.; Rocha, R. C.; Phipps, M. L.; Yeh, H. C.; Balatsky, K. A.; Vu, D. M.; Shreve, A. P.; Werner, J. H.; Martinez, J. S. A DNA-templated fluorescent silver nanocluster with enhanced stability. Nanoscale 2012, 4, 4107–4110.
Zeng, C. J.; Jin, R. C. Gold nanoclusters: Size-controlled synthesis and crystal structures. In Gold Clusters, Colloids and Nanoparticles I. Structure and Bonding; Mingos, D. M. P., Ed.; Springer: Cham, 2014; pp. 87–115.
Ramazanov, R. R.; Sych, T. S.; Reveguk, Z. V.; Maksimov, D. A.; Vdovichev, A. A.; Kononov, A. I. Ag-DNA emitter: Metal nanorod or supramolecular complex? J. Phys. Chem. Lett. 2016, 7, 3560–3566.