Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
The fascia and the fascial space can help provide a better understanding of the body. An intervaginal space injection (ISI) provides unique advantages that require further investigation. An upper limb model including physiological conditions and the tumor process was chosen to determine the flow behavior of liquid metal after ISI. In normal rats, after the injection of liquid metal into the intervaginal space comprising tendons, vessels, and nerves, magnetic resonance imaging and an anatomy experiment indicated that the liquid metal wrapped around the fascial space and finally reached the fingertip downstream and the armpit upstream in addition to the neurovascular bundle without vessels or lymph nodes. Using environmental scanning electron microscopy (ESEM) images, we discovered that the liquid metal was wrapped around the fibers of the fascia and moved forward in microscale or nanoscale areas. These data confirmed a fascia-based pathway. In tumors, the liquid metal moved to the tumor capsule through the damaged spot, where cancer cells destroy the integrity of the fascia between the normal cells and cancer cells. The liquid metal partly wrapped around the tumor and separated the tumor from the surrounding normal muscle. The ESEM images showed that fibers of the fascia penetrated the tumor, thus forming a network through which the liquid metal penetrated the tumor. Our study illustrated the physiological and pathological flow behavior of liquid metal in the upper limb after ISI and demonstrated a nonvascular pathway in the fascia. ISI may be useful for clinical treatment in the fascial pathway.
Tesarz, J.; Hoheisel, U.; Wiedenhöfer, B.; Mense, S. Sensory innervation of the thoracolumbar fascia in rats and humans. Neuroscience 2011, 194, 302–308.
Finando, S.; Finando, D. Fascia and the mechanism of acupuncture. J. Bodywork Move. Ther. 2011, 15, 168–176.
Langevin, H. M.; Huijing, P. A. Communicating about fascia: History, pitfalls, and recommendations. Int. J. Ther. Massage Bodywork 2009, 2, 3–8.
Kitamura, S. Anatomy of the fasciae and fascial spaces of the maxillofacial and the anterior neck regions. Anat. Sci. Int., in press, DOI: 10.1007/s12565-017-0394-x.
Shi, X. L.; Zhu, Y. T.; Hua, W. D.; Ji, Y. L.; Ha, Q.; Han, X. X.; Liu, Y.; Gao, J. W.; Zhang, Q.; Liu, S. D. et al. An in vivo study of the biodistribution of gold nanoparticles after intervaginal space injection in the tarsal tunnel. Nano Res. 2016, 9, 2097–2109.
Li, H. Y.; Chen, M.; Yang, J. F.; Yang, C. Q.; Xu, L.; Wang, F.; Tong, J. B.; Lv, Y.; Suonan, C. Fluid flow along venous adventitia in rabbits: Is it a potential drainage system complementary to vascular circulations? PLoS One 2012, 7, e41395.
Balu-Maestro, C.; Chapellier, C.; Bleuse, A.; Chanalet, I.; Chauvel, C.; Largillier, R. Imaging in evaluation of response to neoadjuvant breast cancer treatment benefits of MRI. Breast Cancer Res. Treat. 2002, 72, 145–152.
Boetes, C.; Mus, R. D.; Holland, R.; Barentsz, J. O.; Strijk, S. P.; Wobbes, T.; Hendriks, J. H.; Ruys, S. H. Breast tumors: Comparative accuracy of MR imaging relative to mammography and US for demonstrating extent. Radiology 1995, 197, 743–747.
Benetazzo, L.; Bizzego, A.; De Caro, R.; Frigo, G.; Guidolin, D.; Stecco, C. 3D reconstruction of the crural and thoracolumbar fasciae. Surg. Radiol. Anat. 2011, 33, 855–862.
Stecco, C.; Stern, R.; Porzionato, A.; Macchi, V.; Masiero, S.; Stecco, A.; De Caro, R. Hyaluronan within fascia in the etiology of myofascial pain. Surg. Radiol. Anat. 2011, 33, 891–896.
Netti, P. A.; Baxter, L. T.; Boucher, Y.; Skalak, R.; Jain, R. K. Time-dependent behavior of interstitial fluid pressure in solid tumors: Implications for drug delivery. Cancer Res. 1995, 55, 5451–5458.
DuFort, C. C.; DelGiorno, K. E.; Carlson, M. A.; Osgood, R. J.; Zhao, C. M.; Huang, Z. D.; Thompson, C. B.; Connor, R. J.; Thanos, C. D.; Scott Brockenbrough, J. et al. Interstitial pressure in pancreatic ductal adenocarcinoma is dominated by a gel-fluid phase. Biophys. J. 2016, 110, 2106–2119.
Casley-Smith, J. R.; Vincent, A. H. The quantitative morphology of interstitial tissue channels in some tissues of the rat and rabbit. Tissue Cell. 1978, 10, 571–584.
Tian, N.; Liu, F. Y.; Zhu, G. M.; Hou, N.; Ba, E. P.; He, S. Z. Ultrasturcture alterations of microvessels in bulbar conjunctiva in patients with cataract. Chin. J. Microcirc. 2003, 13, 1–3.
Carare, R. O.; Bernardes-Silva, M.; Newman, T. A.; Page, A. M.; Nicoll, J. A. R.; Perry, V. H.; Weller, R. O. Solutes, but not cells, drain from the brain parenchyma along basement membranes of capillaries and arteries: Significance for cerebral amyloid angiopathy and neuroimmunology. Neuropathol. Appl. Neurobiol. 2008, 34, 131–144.
Iliff, J. J.; Wang, M. H.; Liao, Y. H.; Plogg, B. A.; Peng, W. G.; Gundersen, G. A.; Benveniste, H.; Vates, G. E.; Deane, R.; Goldman, S. A. et al. A paravascular pathway facilitates CSF flow through the brain parenchyma and the clearance of interstitial solutes, including amyloid β. Sci. Transl. Med. 2012, 4, 147ra111.
Thrane, V. R.; Thrane, A. S.; Plog, B. A.; Thiyagarajan, M.; Iliff, J. J.; Deane, R.; Nagelhus, E. A.; Nedergaard, M. Paravascular microcirculation facilitates rapid lipid transport and astrocyte signaling in the brain. Sci. Rep. 2012, 3, 2582.
Oberdörster, G.; Sharp, Z.; Atudorei, V.; Elder, A.; Gelein, R.; Kreyling, W.; Cox, C. Translocation of inhaled ultrafine particles to the brain. Inhal. Toxicol. 2004, 16, 437–445.
Li, H. Y.; Tong, J. B.; Cao, W. G.; Chen, M.; Li, H.; Dai, H.; Xu, L.; Chen, X. L. Longitudinal non-vascular transport pathways originating from acupuncture points in extremities visualised in human body. Chin. Sci. Bull. 2014, 59, 5090– 5095.
Spells, K. E. The determination of the viscosity of liquid gallium over an extended nrange of temperature. Proc. Phys. Soc. 1936, 48, 299–311.
Li, T.; Lv, Y. G.; Liu, J.; Zhou, Y. X. A powerful way of cooling computer chip using liquid metal with low melting point as the cooling fluid. Forsch. Ingenieurwes. 2006, 70, 243–251.
Ma, K. Q.; Liu, J. Heat-driven liquid metal cooling device for the thermal management of a computer chip. J. Phys. D: Appl. Phys. 2007, 40, 4722–4729.
Wang, Q.; Yu, Y.; Liu, J. Delivery of liquid metal to the target vessels as vascular embolic agent to starve diseased tissues or tumors to death. arXiv: 1408.0989, 2014.
Deng, Y. G.; Liu, J. Flexible mechanical joint as human exoskeleton using low-melting-point alloy. J. Med. Devices. 2014, 8, 044506.
Zhang, J.; Sheng, L.; Jin, C.; Liu, J. Liquid metal as connecting or functional recovery channel for the transected sciatic nerve. arXiv: 1404.5931, 2014.
Liu, F. J.; Yu, Y. Z.; Yi, L. T.; Liu, J. Liquid metal as reconnection agent for peripheral nerve injury. Sci. Bull. 2016, 61, 939–947.
Wang, Q.; Yu, Y.; Pan, K. Q.; Liu, J. Liquid metal angiography for mega contrast X-ray visualization of vascular network in reconstructing in vitro organ anatomy. IEEE Trans. Biomed. Eng. 2014, 61, 2161–2166.
Stecco, A.; Macchi, V.; Stecco, C.; Porzionato, A.; Ann Day, J.; Delmas, V.; De Caro, R. Anatomical study of myofascial continuity in the anterior region of the upper limb. J. Bodywork Move. Ther. 2009, 13, 53–62.
Stecco, C.; Pavan, P. G.; Porzionato, A.; Macchi, V.; Lancerotto, L.; Carniel, E. L.; Natali, A. N.; De Caro, R. Mechanics of crural fascia: From anatomy to constitutive modelling. Surg. Radiol. Anat. 2009, 31, 523–529.
Guyton, A. C. A concept of negative interstitial pressure based on pressures in implanted perforated capsules. Circ. Res. 1963, 12, 399–414.
Feng, J. T.; Wang, F.; Han, X. X.; Ao, Z.; Sun, Q. M.; Hua, W. D.; Chen, P. P.; Jing, T. W.; Li, H. Y.; Han, D. A "green pathway" different from simple diffusion in soft matter: Fast molecular transport within micro/nanoscale multiphase porous systems. Nano Res. 2014, 7, 434–442.
Hendrix, M. J.; Seftor, E. A.; Hess, A. R.; Seftor, R. E. B. Vasculogenic mimicry and tumour-cell plasticity: Lessons from melanoma. Nat. Rev. Cancer 2003, 3, 411–421.
Liao, F. L.; Li, M.; Han, D.; Cao, J.; Chen, K. Biomechano-pharmacology: A new borderline discipline. Trends Pharmacol. Sci. 2006, 27, 287–289.
Hao, Y.; Qiao, R. R.; Fang, F; Wang, X. X.; Dong, C. Y.; Liu, K.; Liu, C. Y.; Liu, Z. F.; Lei, H.; Wang, F. et al. NaGdF4 nanoparticle-based molecular probes for magnetic resonance imaging of intraperitoneal tumor xenografts in vivo. ACS Nano 2013, 7, 330–338.
Liu, C. Y.; H, Y.; Gao, M. Y. Are rare-earth nanoparticles suitable for in vivo applications? Adv. Mater. 2014, 26, 6922–6932.
Parvin, N.; Jin, Q.; Wei, Y. Z.; Yu, R. B.; Zheng, B.; Huang, L.; Zhang, Y.; Wang, H. L.; Zhang, H.; Gao, M. Y. et al. Few-laye graphdiyne nanosheets applied for multiplexed real-time DNA detection. Adv. Mater. 2017, 29, 1606755.
Carey, F. A. Measurement of nuclear DNA content in histological and cytological specimens: Principles and applications. J. Pathol. 1994, 172, 307–312.
Qi, J.; Lei, X. Y.; Wang, J. Y.; Tang, H. J.; Ren, H.; Yang, Y.; Jin, Q.; Zhang, L. J.; Yu, R. B.; Ma, G. H. et al. Multi- shelled hollow micro-/nanostructures. Chem. Soc. Rev. 2015, 44, 6749–6773.