AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Highly delocalized endohedral metal in Gd@C2v(9)-C82 metallofullerenes co-crystallized with α-S8

Cheng Li1,2,§Xuejiao J. Gao4,§Huanli Yao1,2Huan Huang1,2Rongli Cui1,2Xihong Guo1,2Lele Zhang1Bing Liu1,2Binggang Xu1Weiqun Shi1,2Jinquan Dong1Lai Feng3( )Xingfa Gao4( )Baoyun Sun1,2( )
CAS Key Lab for Biomedical Effects of Nanomaterials & NanosafetyInstitute of High Energy PhysicsChinese Academy of SciencesBeijing100049China
University of Chinese Academy of SciencesBeijing100049China
College of PhysicsOptoelectronics and Energy & Collaborative Innovation Center of Suzhou Nano Science and TechnologySoochow UniversitySuzhou215006China
College of Chemistry and Chemical EngineeringJiangxi Normal UniversityNanchang330022China

§ Cheng Li and Xuejiao J. Gao contributed equally to this work.

Show Author Information

Graphical Abstract

Abstract

A new Gd@C2v(9)-C82·2.5(S8)·0.5(CS2) co-crystal was prepared for the first time and characterized by single-crystal X-ray diffraction (XRD). The analysis clearly showed that, even though the C2v(9)-C82 cage is fully ordered, the endohedral Gd atoms are highly disordered. This result indicates the presence of highly delocalized endohedral Gd atoms, which has never been reported before. Density functional theory (DFT) calculations were used to rationalize the XRD results. The calculations reveal the presence of two local energy minima, a and b, with the latter existing as four conformers b1–b4. Whereas the energy difference between the two minima is calculated only ~ 10 kcal/mol, their interconversion is almost impossible due to a high energy barrier, of up to 35.98 kcal/mol. This suggests the existence of multiple low-energy positions for the endohedral Gd atom. In addition, a remarkable electron transfer from the C2v(9)-C82 cage to the S8 moieties was demonstrated, which might result in a modified endohedral environment and further contribute to the occurrence of delocalized endohedral Gd atoms.

Electronic Supplementary Material

Download File(s)
12274_2017_1849_MOESM1_ESM.pdf (1.1 MB)
12274_2017_1849_MOESM2_ESM.cif (1.8 MB)
12274_2017_1849_MOESM3_ESM.cif (1.9 MB)
12274_2017_1849_MOESM4_ESM.cif (2.2 MB)

References

1

Popov, A. A.; Yang, S. F.; Dunsch, L. Endohedral fullerenes. Chem. Rev. 2013, 113, 5989–6113.

2

Li, C.; Cui, R. L.; Feng, L. Z.; Li, J.; Huang, H.; Yao, H. L.; Guo, X. H.; Dong, J. Q.; Xing, G. M.; Liu, Z. et al. Synthesis of a UCNPs@SiO2@Gadofullerene nanocomposite and its application in UCL/MR bimodal imaging. RSC Adv. 2016, 6, 98968–98974.

3

Cui, R. L.; Li, J.; Huang, H.; Zhang, M. Y.; Guo, X. H.; Chang, Y. N.; Li, M.; Dong, J. Q.; Sun, B. Y.; Xing, G. M. Novel carbon nanohybrids as highly efficient magnetic resonance imaging contrast agents. Nano Res. 2015, 8, 1259–1268.

4

Li, F. -F.; Chen, N.; Mulet-Gas, M.; Triana, V.; Murillo, J.; Rodríguez-Fortea, A.; Poblet, J. M.; Echegoyen, L. Ti2S@D3h(24109)-C78: A sulfide cluster metallofullerene containing only transition metals inside the cage. Chem. Sci. 2013, 4, 3404–3410.

5

Chaur, M. N.; Melin, F.; Ortiz, A. L.; Echegoyen, L. Chemical, electrochemical, and structural properties of endohedral metallofullerenes. Angew. Chem., Int. Ed. 2009, 48, 7514– 7538.

6

Osuna, S.; Swart, M.; Sola, M. The reactivity of endohedral fullerenes. What can be learnt from computational studies? Phys. Chem. Chem. Phys. 2011, 13, 3585–3603.

7

Lu, X.; Bao, L. P.; Akasaka, T.; Nagase, S. Recent progress in the chemistry of endohedral metallofullerenes. Chem. Commun. 2014, 50, 14701–14715.

8

Takata, M.; Umeda, B.; Nishibori, E.; Sakata, M.; Saito, Y.; Ohno, M.; Shinohara, H. Confirmation by X-ray diffraction of the endohedral nature of the metallofullerene Y@C82. Nature 1995, 377, 46–49.

9

Wang, C. R.; Kai, T.; Tomiyama, T.; Yoshida, T.; Kobayashi, Y.; Nishibori, E.; Takata, M.; Sakata, M.; Shinohara, H. A scandium carbide endohedral metallofullerene: (Sc2C2)@C84. Angew. Chem., Int. Ed. 2001, 40, 397–399.

10

Lu, X.; Slanina, Z.; Akasaka, T.; Tsuchiya, T.; Mizorogi, N.; Nagase, S. Yb@C2n (n = 40, 41, 42): New fullerene allotropes with unexplored electrochemical properties. J. Am. Chem. Soc. 2010, 132, 5896–5905.

11

Kodama, T.; Ozawa, N.; Miyake, Y.; Sakaguchi, K.; Nishikawa, H.; Ikemoto, I.; Kikuchi, K.; Achiba, Y. Structural study of three isomers of Tm@C82 by 13C NMR spectroscopy. J. Am. Chem. Soc. 2002, 124, 1452–1455.

12

Sun, B. Y.; Feng, L.; Shi, Z. J.; Gu, Z. N. Improved extraction of metallofullerenes with DMF at high temperature. Carbon 2002, 40, 1591–1595.

13

Stevenson, S.; Harich, K.; Yu, H.; Stephen, R. R.; Heaps, D.; Coumbe, C.; Phillips, J. P. Nonchromatographic "stir and filter approach" (SAFA) for isolating Sc3n@C80 metallofullerenes. J. Am. Chem. Soc. 2006, 128, 8829–8835.

14

Mercado, B. Q.; Jiang, A.; Yang, H.; Wang, Z. M.; Jin, H. X.; Liu, Z. Y.; Olmstead, M. M.; Balch, A. L. Isolation and structural characterization of the molecular nanocapsule Sm2@D3d(822)-C104. Angew. Chem., Int. Ed. 2009, 48, 9114–9116.

15

Rodriguez-Fortea, A.; Balch, A. L.; Poblet, J. M. Endohedral metallofullerenes: A unique host-guest association. Chem. Soc. Rev. 2011, 40, 3551–3563.

16

Dai, X.; Gao, Y.; Xin, M. S.; Wang, Z. G.; Zhou, R. H. The ground state and electronic structure of Gd@C82: A systematic theoretical investigation of first principle density functionals. J. Chem. Phys. 2015, 141, 244306.

17

Gao, X. J.; Chen, B. Z.; Gao, X. F. Isolated aromatic patches as a rule to select metallofullerene multiple adducts with high chemical stabilities. Carbon 2016, 96, 980–986.

18

Garcia-Borràs, M.; Osuna, S.; Luis, J. M.; Swart, M.; Solà, M. The role of aromaticity in determining the molecular structure and reactivity of (endohedral metallo)fullerenes. Chem. Soc. Rev. 2014, 43, 5089–5105.

19

Cong, H. L.; Yu, B.; Akasaka, T.; Lu, X. Endohedral metallofullerenes: An unconventional core-shell coordination union. Coord. Chem. Rev. 2013, 257, 2880–2898.

20

Lu, X.; Akasaka, T.; Nagase, S. Chemistry of endohedral metallofullerenes: The role of metals. Chem. Commun. 2011, 47, 5942–5957.

21

Garcia-Borras, M.; Cerón, M. R.; Osuna, S.; Izquierdo, M.; Luis, J. M.; Echegoyen, L.; Solà, M. The regioselectivity of bingel-hirsch cycloadditions on isolated pentagon rule endohedral metallofullerenes. Angew. Chem., Int. Ed. 2016, 55, 2374–2377.

22

Kurihara, H.; Lu, X.; Iiduka, Y.; Nikawa, H.; Mizorogi, N.; Slanina, Z.; Tsuchiya, T.; Nagase, S.; Akasaka, T. Chemical understanding of carbide cluster metallofullerenes: A case study on Sc2C2@C2v(5)-C80 with complete X-ray crystallographic characterizations. J. Am. Chem. Soc. 2012, 134, 3139–3144.

23

Akasaka, T.; Kono, T.; Takematsu, Y.; Nikawa, H.; Nakahodo, T.; Wakahara, T.; Ishitsuka, M. O.; Tsuchiya, T.; Maeda, Y.; Liu, M. T. H. et al. Does Gd@C82 have an anomalous endohedral structure? Synthesis and single crystal X-ray structure of the carbene adduct. J. Am. Chem. Soc. 2008, 130, 12840–12841.

24

Suzuki, M.; Yamada, M.; Maeda, Y.; Sato, S.; Takano, Y.; Uhlik, F.; Slanina, Z.; Lian, Y. F.; Lu, X.; Nagase, S. et al. The unanticipated dimerization of Ce@C2v(9)C82 upon co-crystallization with Ni(octaethylporphyrin) and comparison with monomeric M@C2v(9)C82 (M = La, Sc, and Y). Chem. —Eur. J. 2016, 22, 18115–18122.

25

Bao, L. P.; Pan, C. W.; Slanina, Z.; Uhlik, F.; Akasaka, T.; Lu, X. Isolation and crystallographic characterization of the labile isomer of Y@C82 co-crystallized with Ni(OEP): Unprecedented dimerization of pristine metallofullerenes. Angew. Chem., Int. Ed. 2016, 55, 9234–9238.

26

Hu, Z. Q.; Hao, Y. J.; Slanina, Z.; Gu, Z. G.; Shi, Z. J.; Uhlik, F.; Zhao, Y. F.; Feng, L. Popular C82 fullerene cage encapsulating a divalent metal ion Sm2+: Structure and electrochemistry. Inorg. Chem. 2015, 54, 2103–2108.

27

Yang, H.; Jin, H. X.; Wang, X. Q.; Liu, Z. Y.; Yu, M. L.; Zhao, F. K.; Mercado, B. Q.; Olmstead, M. M.; Balch, A. L. X-ray crystallographic characterization of new soluble endohedral fullerenes utilizing the popular C82 bucky cage. Isolation and structural characterization of Sm@C3v(7)-C82, Sm@Cs(6)-C82, and Sm@C2(5)-C82. J. Am. Chem. Soc. 2012, 134, 14127–14136.

28

Sato, S.; Nikawa, H.; Seki, S.; Wang, L.; Luo, G. F.; Lu, J.; Haranaka, M.; Tsuchiya, T.; Nagase, S.; Akasaka, T. A co-crystal composed of the paramagnetic endohedral metallofullerene La@C82 and a nickel porphyrin with high electron mobility. Angew. Chem., Int. Ed. 2012, 51, 1589–1591.

29

Suzuki, M.; Slanina, Z.; Mizorogi, N.; Lu, X.; Nagase, S.; Olmstead, M. M.; Balch, A. L.; Akasaka, T. Single-crystal X-ray diffraction study of three Yb@C82 isomers co-crystallized with Ni(octaethylporphyrin). J. Am. Chem. Soc. 2012, 134, 18772–18778.

30

Suzuki, M.; Lu, X.; Sato, S.; Nikawa, H.; Mizorogi, N.; Slanina, Z.; Tsuchiya, T.; Nagase, S.; Akasaka, T. Where does the metal cation stay in Gd@C2v(9)C82? A single-crystal X-ray diffraction study. Inorg. Chem. 2012, 51, 5270–5273.

31

Zhao, S. S.; Zhao, P.; Cai, W. T.; Bao, L. P.; Chen, M. Q.; Xie, Y. P.; Zhao, X.; Lu, X. Stabilization of giant fullerenes C2(41)-C90, D3(85)-C92, C1(132)-C94, C2(157)-C96, and C1(175)-C98 by encapsulation of a large La2C2 cluster: The importance of cluster-cage matching. J. Am. Chem. Soc. 2017, 139, 4724–4728.

32

Wang, Z. Y.; Aoyagi, S.; Omachi, H.; Kitaura, R.; Shinohara, H. Isolation and structure determination of a missing endohedral fullerene La@C70 through in situ trifluoromethylation. Angew. Chem., Int. Ed. 2016, 55, 199–202.

33

Shinohara, H. Endohedral metallofullerenes. Rep. Prog. Phys. 2000, 63, 843–892.

34

Senapati, L.; Schrier, J.; Whaley, K. B. Electronic transport, structure, and energetics of endohedral Gd@C82 metallofullerenes. Nano Lett. 2004, 4, 2073–2078.

35

Mizorogi, N.; Nagase, S. Do Eu@C82 and Gd@C82 have an anomalous endohedral structure? Chem. Phys. Lett. 2006, 431, 110–112.

36

Liu, L.; Gao, B.; Chu, W. S.; Chen, D. L.; Hu, T. D.; Wang, C. R.; Dunsch, L.; Marcelli, A.; Luo, Y.; Wu, Z. Y. The structural determination of endohedral metallofullerene Gd@C82 by XANES. Chem. Commun. 2008, 474–476.

37

Sado, Y.; Aoyagi, S.; Kitaura, R.; Miyata, Y.; Nishibori, E.; Sawa, H.; Sugimoto, K.; Shinohara, H. Structure of Tm@C82(Ⅰ) metallofullerene by single-crystal X-ray diffraction using the 1: 2 Co-crystal with octaethylporphyrin nickel (Ni(OEP)). J. Phys. Chem. C 2013, 117, 6437–6442.

38

Sheldrick, G. M. Crystal structure refinement with SHELXL. Acta Cryst. Sect. C 2015, 71, 3–8.

39

Zhao, Y.; Truhlar, D. G. The M06 suite of density functionals for main group thermochemistry, thermochemical kinetics, noncovalent interactions, excited states, and transition elements: Two new functionals and systematic testing of four m06-class functionals and 12 other functionals. Theore. Chem. Acc. 2008, 120, 215–241.

40

Hariharan, P. C.; Pople, J. A. The influence of polarization functions on molecular orbital hydrogenation energies. Theore. Chim. Acta 1973, 28, 213–222.

41

Hehre, W. J.; Ditchfield, R.; Pople, J. A. Self-consistent molecular orbital methods. Ⅻ. Further extensions of Gaussian-type basis sets for use in molecular orbital studies of organic molecules. J. Chem. Phys. 1972, 56, 2257–2261.

42

Cao, X. Y.; Dolg, M. Valence basis sets for relativistic energy-consistent small-core lanthanide pseudopotentials. J. Chem. Phys. 2001, 115, 7348–7355.

43

Cao, X. Y.; Dolg, M. Segmented contraction scheme for small-core lanthanide pseudopotential basis sets. J. Mol. Struct. : THEOCHEM 2002, 581, 139–147.

44

Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Petersson, G. A.; Nakatsuji, H. Gaussian 09, Revision A. 02; Gaussian, Inc. : Wallingford, CT, USA, 2009.

45

Ghiassi, K. B.; Chen, S. Y.; Wescott, J.; Balch, A. L.; Olmstead, M. M. New insights into the structural complexity of C60·2S8: Two crystal morphologies, two phase changes, four polymorphs. Cryst. Growth Des. 2015, 15, 404–410.

Nano Research
Pages 2277-2284
Cite this article:
Li C, Gao XJ, Yao H, et al. Highly delocalized endohedral metal in Gd@C2v(9)-C82 metallofullerenes co-crystallized with α-S8. Nano Research, 2018, 11(4): 2277-2284. https://doi.org/10.1007/s12274-017-1849-z

693

Views

10

Crossref

N/A

Web of Science

10

Scopus

0

CSCD

Altmetrics

Received: 25 May 2017
Revised: 05 September 2017
Accepted: 11 September 2017
Published: 19 March 2018
© Tsinghua University Press and Springer-Verlag GmbH Germany 2017
Return