AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Sodium-doped carbon nitride nanotubes for efficient visible light-driven hydrogen production

Longshuai Zhang1,3Ning Ding1,3Muneaki Hashimoto2Koudai Iwasaki2Noriyasu Chikamori2Kazuya Nakata2Yuzhuan Xu1,3Jiangjian Shi1,3Huijue Wu1,3Yanhong Luo1,3Dongmei Li1,3( )Akira Fujishima2( )Qingbo Meng1,3( )
Key Laboratory for Renewable EnergyChinese Academy of Sciences (CAS)Beijing Key Laboratory for New Energy Materials and DevicesBeijing National Laboratory for Condensed Matter PhysicsInstitute of PhysicsCASBeijing100190China
Photocatalysis International Research CenterResearch Institute for Science and TechnologyTokyo University of Science2641 YamazakiNoda, Chiba278-0022Japan
School of Physical SciencesUniversity of Chinese Academy of SciencesBeijing100049China
Show Author Information

Graphical Abstract

Abstract

Sodium-doped carbon nitride nanotubes (Nax -CNNTs) were prepared by a green and simple two-step method and applied in photocatalytic water splitting for the first time. Transmission electron microscopy (TEM) element mapping and X-ray photoelectron spectroscopy (XPS) measurements confirm that sodium was successfully introduced in the carbon nitride nanotubes (CNNTs), and the intrinsic structure of graphitic carbon nitride (g-C3N4) was also maintained in the products. Moreover, the porous structure of the CNNTs leads to relatively large specific surface areas. Photocatalytic tests indicate that the porous tubular structure and Na+ doping can synergistically enhance the hydrogen evolution rate under visible light (λ > 420 nm) irradiation in the presence of sacrificial agents, leading to a hydrogen evolution rate as high as 143 μmol·h-1 (20 mg catalyst). Moreover, other alkali metal-doped CNNTs, such as Lix -CNNTs and Kx -CNNTs, were tested; both materials were found to enhance the hydrogen evolution rate, but to a lower extent compared with the Nax -CNNTs. This highlights the general applicability of the present method to prepare alkali metal-doped CNNTs; a preliminary mechanism for the photocatalytic hydrogen evolution reaction in the Nax -CNNTs is also proposed.

Electronic Supplementary Material

Download File(s)
12274_2017_1853_MOESM1_ESM.pdf (571.5 KB)

References

1

Fujishima, A.; Honda, K. Electrochemical photolysis of water at a semiconductor electrode. Nature 1972, 238, 37–38.

2

Wang, X.; Xu, Q.; Li, M. R.; Shen, S.; Wang, X. L.; Wang, Y. C.; Feng, Z. C.; Shi, J. Y.; Han, H. X.; Li, C. Photocatalytic overall water splitting promoted by an α-β phase junction on Ga2O3. Angew. Chem., Int. Ed. 2012, 51, 13089–13092.

3

Wang, Q.; Hisatomi, T.; Jia, Q. X.; Tokudome, H.; Zhong, M.; Wang, C. Z.; Pan, Z. H.; Takata, T.; Nakabayashi, M.; Shibata, N. et al. Scalable water splitting on particulate photocatalyst sheets with a solar-to-hydrogen energy conversion efficiency exceeding 1%. Nat. Mater. 2016, 15, 611–615.

4

Chen, X. B.; Liu, L.; Peter, Y. Y.; Mao, S. S. Increasing solar absorption for photocatalysis with black hydrogenated titanium dioxide nanocrystals. Science 2011, 331, 746–750.

5

Iwashina, K.; Iwase, A.; Ng, Y. H.; Amal, R.; Kudo, A. Z‑schematic water splitting into H2 and O2 using metal sulfide as a hydrogen-evolving photocatalyst and reduced graphene oxide as a solid-state electron mediator. J. Am. Chem. Soc. 2015, 137, 604–607.

6

Bi, Y. P.; Ouyang, S. X.; Umezawa, N.; Cao, J. Y.; Ye, J. H. Facet effect of single-crystalline Ag3PO4 sub-microcrystals on photocatalytic properties. J. Am. Chem. Soc. 2011, 133, 6490–6492.

7

Tada, H.; Fujishima, M.; Kobayashi, H. Photodeposition of metal sulfide quantum dots on titanium(Ⅳ) dioxide and the applications to solar energy conversion. Chem. Soc. Rev. 2011, 40, 4232–4243.

8

Xiang, Q. J.; Yu, J. G.; Jaroniec, M. Graphene-based semiconductor photocatalysts. Chem. Soc. Rev. 2012, 41, 782–796.

9

Wang, X. C.; Maeda, K.; Thomas, A.; Takanabe, K.; Xin, G.; Carlsson, M. J.; Domen, K.; Antonietti, M. A metal-free polymeric photocatalyst for hydrogen production from water under visible light. Nat. Mater. 2009, 8, 76–80.

10

Liu, G.; Niu, P.; Sun, C. H.; Smith, S. C.; Chen, Z. G.; Lu, G. Q.; Cheng, H. M. Unique electronic structure induced high photoreactivity of sulfur-doped graphitic C3N4. J. Am. Chem. Soc. 2010, 132, 11642–11648.

11

Zhu, J. J.; Xiao, P.; Li, H. L.; Carabineiro, S. A. C. Graphitic carbon nitride: Synthesis, properties, and applications in catalysis. ACS Appl. Mater. Interfaces 2014, 6, 16449–16465.

12

Zheng, Y.; Lin, L. H.; Wang, B.; Wang, X. C. Graphitic carbon nitride polymers toward sustainable photoredox catalysis. Angew. Chem., Int. Ed. 2015, 54, 12868–12884.

13

Ong, W. J.; Tan, L. L.; Ng, Y. H.; Yong, S. T.; Chai, S. P. Graphitic carbon nitride (g‑C3N4)‑based photocatalysts for artificial photosynthesis and environmental remediation: Are we a step closer to achieving sustainability? Chem. Rev. 2016, 116, 7159–7329.

14

Pan, C. S.; Xu, J.; Wang, Y. J.; Li, D.; Zhu, Y. F. Dramatic activity of C3N4/BiPO4 photocatalyst with core/shell structure formed by self-assembly. Adv. Funct. Mater. 2012, 22, 1518–1524.

15

Cao, S. W.; Low, J. X.; Yu, J. G.; Jaroniec, M. Polymeric photocatalysts based on graphitic carbon nitride. Adv. Mater. 2015, 27, 2150–2176.

16

Lin, L. H.; Ou, H. H.; Zhang, Y. F.; Wang, X. C. Tri‑s‑triazine-based crystalline graphitic carbon nitrides for highly efficient hydrogen evolution photocatalysis. ACS Catal. 2016, 6, 3921–3931.

17

Raziq, F.; Qu, Y.; Humayun, M.; Zada, A.; Yu, H. T.; Jing, L. Q. Synthesis of SnO2/B-P codoped g-C3N4 nanocomposites as efficient cocatalyst-free visible-light photocatalysts for CO2 conversion and pollutant degradation. Appl. Catal. B: Environ. 2017, 201, 486–494.

18

Zada, A.; Humayun, M.; Raziq, F.; Zhang, X. L.; Qu, Y.; Bai, L. L.; Qin, C. L.; Jing, L. Q.; Fu, H. G. Exceptional visible-light-driven cocatalyst-free photocatalytic activity of g-C3N4 by well designed nanocomposites with plasmonic Au and SnO2. Adv. Energy Mater. 2016, 6, 1601190.

19

Jun, Y. S.; Park, J.; Lee, S. U.; Thomas, A.; Hong, W. H.; Stucky, G. D. Three-dimensional macroscopic assemblies of low-dimensional carbon nitrides for enhanced hydrogen evolution. Angew. Chem., Int. Ed. 2013, 52, 11083– 11087.

20

Zhang, J. S.; Zhang, M. W.; Yang, C.; Wang, X. C. Nanospherical carbon nitride frameworks with sharp edges accelerating charge collection and separation at a soft photocatalytic interface. Adv. Mater. 2014, 26, 4121–4126.

21

Yan, H. J. Soft-templating synthesis of mesoporous graphitic carbon nitride with enhanced photocatalytic H2 evolution under visible light. Chem. Commun. 2012, 48, 3430–3432.

22

Chen, X. F.; Jun, Y. S.; Takanabe, K.; Maeda, K.; Domen, K.; Fu, X. Z.; Antonietti, M.; Wang, X. C. Ordered mesoporous SBA-15 type graphitic carbon nitride: A semiconductor host structure for photocatalytic hydrogen evolution with visible light. Chem. Mater. 2009, 21, 4093–4095.

23

Liu, J.; Huang, J. H.; Zhou, H.; Antonietti, M. Uniform graphitic carbon nitride nanorod for efficient photocatalytic hydrogen evolution and sustained photoenzymatic catalysis. ACS Appl. Mater. Interfaces 2014, 6, 8434–8440.

24

Guo, S. E.; Deng, Z. P.; Li, M. X.; Jiang, B. J.; Tian, C. G.; Pan, Q. J.; Fu, H. G. Phosphorus-doped carbon nitride tubes with a layered micro-nanostructure for enhanced visible-light photocatalytic hydrogen evolution. Angew. Chem., Int. Ed. 2016, 55, 1830–1834.

25

Tahir, M.; Mahmood, N.; Zhang, X. X.; Mahmood, T.; Butt, F. K.; Aslam, I.; Tanveer, M.; Idrees, F.; Khalid, S.; Shakir, I. et al. Bifunctional catalysts of Co3O4@GCN tubular nanostructured (TNS) hybrids for oxygen and hydrogen evolution reactions. Nano Res. 2015, 8, 3725–3736.

26

Shalom, M.; Inal, S.; Fettkenhauer, C.; Neher, D.; Antonietti, M. Improving carbon nitride photocatalysis by supramolecular preorganization of monomers. J. Am. Chem. Soc. 2013, 135, 7118–7121.

27

Niu, P.; Zhang, L. L.; Liu, G.; Cheng, H. M. Graphene-like carbon nitride nanosheets for improved photocatalytic activities. Adv. Funct. Mater. 2012, 22, 4763–4770.

28

Erwin, S. C.; Zu, L. J.; Haftel, M. I.; Efros, A. L.; Kennedy, T. A.; Norris, D. J. Doping semiconductor nanocrystals. Nature 2005, 436, 91–94.

29

Lu, S.; Li, C.; Li, H. H.; Zhao, Y. F.; Gong, Y. Y.; Niu, L. Y.; Liu, X. J.; Wang, T. The effects of nonmetal dopants on the electronic, optical and chemical performances of monolayer g-C3N4 by first-principles study. Appl. Surf. Sci. 2017, 392, 966–974.

30

Zhu, Y. N.; Cao, C. Y.; Jiang, W. J.; Yang, S. L.; Hu, J. S.; Song, W. G.; Wan, L. J. Nitrogen, phosphorus and sulfur co-doped ultrathin carbon nanosheets as a metal-free catalyst for selective oxidation of aromatic alkanes and the oxygen reduction reaction. J. Mater. Chem. A 2016, 4, 18470–18477.

31

Ye, L. J.; Wang, D.; Chen, S. J. Fabrication and enhanced photoelectrochemical performance of MoS2/S-doped g-C3N4 heterojunction film. ACS Appl. Mater. Interfaces 2016, 8, 5280–5289.

32

Lin, Z. Z.; Wang, X. C. Nanostructure engineering and doping of conjugated carbon nitride semiconductors for hydrogen photosynthesis. Angew. Chem., Int. Ed. 2013, 52, 1735–1738.

33

Hong, J. D.; Xia, X. Y.; Wang, Y. S.; Xu, R. Mesoporous carbon nitride with in situ sulfur doping for enhanced photocatalytic hydrogen evolution from water under visible light. J. Mater. Chem. 2012, 22, 15006–15012.

34

Yue, B.; Li, Q. Y.; Iwai, H.; Kako, T.; Ye, J. H. Hydrogen production using zinc-doped carbon nitride catalyst irradiated with visible light. Sci. Technol. Adv. Mater. 2011, 12, 034401.

35

Beheshtian, J.; Baei, T. M.; Bagheri, Z.; Peyghan, A. A. Carbon nitride nanotube as a sensor for alkali and alkaline earth cations. Appl. Surf. Sci. 2013, 264, 699–706.

36

Hu, S. Z.; Chen, X.; Li, Q.; Li, F. Y.; Fan, Z. P.; Wang, H.; Wang, Y. J.; Zheng, B. H.; Wu, G. Fe3+ doping promoted N2 photofixation ability of honeycombed graphitic carbon nitride: The experimental and density functional theory simulation analysis. Appl. Catal. B: Environ. 2017, 201, 58–69.

37

Xiong, T.; Cen, W. L.; Zhang, Y. X.; Dong, F. Bridging the g‑C3N4 interlayers for enhanced photocatalysis. ACS Catal. 2016, 6, 2462–2472.

38

Gao, H. L.; Yan, S. C.; Wang, J. J.; Huang, Y. A.; Wang, P.; Li, Z. S.; Zou Z. G. Towards efficient solar hydrogen production by intercalated carbon nitride photocatalyst. Phys. Chem. Chem. Phys. 2013, 15, 18077–18084.

39

Zhang, M.; Bai, X. J.; Liu, D.; Wang, J.; Zhu, Y. F. Enhanced catalytic activity of potassium-doped graphitic carbon nitride induced by lower valence position. Appl. Catal. B: Environ. 2015, 164, 77–81.

40

Wu, M.; Yan, J. M.; Tang, X. N.; Zhao, M.; Jiang, Q. Synthesis of potassium-modified graphitic carbon nitride with high photocatalytic activity for hydrogen evolution. ChemSusChem 2014, 7, 2654–2658.

41

Jiang, L. B.; Yuan, X. Z.; Pan, Y.; Liang, J.; Zeng, G. M.; Wu, Z. B.; Wang, H. Doping of graphitic carbon nitride for photocatalysis: A review. Appl. Catal. B: Environ. 2017, 217, 388–406.

42

Long, B. H.; Lin, J. L.; Wang, X. C. Thermally-induced desulfurization and conversion of guanidine thiocyanate into graphitic carbon nitride catalysts for hydrogen photosynthesis. J. Mater. Chem. A 2014, 2, 2942–2951.

43

Fan, X. Q.; Xing, Z.; Shu, Z.; Zhang, L. X.; Wang, L. Z.; Shi, J. L. Improved photocatalytic activity of g-C3N4 derived from cyanamide-urea solution. RSC Adv. 2015, 5, 8323–8328.

44

Dong, F.; Ou, M. Y.; Jiang, Y. K.; Guo, S.; Wu, Z. B. Efficient and durable visible light photocatalytic performance of porous carbon nitride nanosheets for air purification. Ind. Eng. Chem. Res. 2014, 53, 2318–2330.

45

Le, S. K.; Jiang, T. S.; Li, Y. W.; Zhao, Q.; Li, Y. Y.; Fang, W. B.; Gong, M. Highly efficient visible-light-driven mesoporous graphitic carbon nitride/ZnO nanocomposite photocatalysts. Appl. Catal. B: Environ. 2017, 200, 601– 610.

46

Han, Q.; Wang, B.; Gao, J.; Cheng, Z. H.; Zhao, Y.; Zhang, Z. P.; Qu, L. T. Atomically thin mesoporous nanomesh of graphitic C3N4 for high-efficiency photocatalytic hydrogen evolution. ACS Nano 2016, 10, 2745–2751.

47

Sharma, J.; Gora, T.; Rimstidt, J. D.; Staley, R. X-ray photoelectron spectra of the alkali azides. Chem. Phys. Lett. 1972, 15, 232–235.

48

Sing, K. S. W.; Everett, D. H.; Haul, R. A. W.; Moscou, L.; Pierotti, R. A.; Rouquérol, J.; Siemieniewska, T. Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity (Recommendations 1984). Pure Appl. Chem. 1985, 57, 603–619.

49

Zheng, D. D.; Cao, X. N.; Wang, X. C. Precise formation of a hollow carbon nitride structure with a Janus surface to promote water splitting by photoredox catalysis. Angew. Chem., Int. Ed. 2016, 55, 11512–11516.

50

Zhang, J. K.; Yu, Z. B.; Gao, Z.; Ge, H. B.; Zhao, S. C.; Chen, C. Q.; Chen, S.; Tong, X. L.; Wang, M. H.; Zheng, Z. F. et al. Porous TiO2 nanotubes with spatially separated platinum and CoOx cocatalysts produced by atomic layer deposition for photocatalytic hydrogen production. Angew. Chem., Int. Ed. 2017, 56, 816–820.

51

Tong, Z. W.; Yang, D.; Li, Z.; Nan, Y. H.; Ding, F.; Shen, Y. C.; Jiang, Z. Y. Thylakoid-inspired multishell g‑C3N4 nanocapsules with enhanced visible-light harvesting and electron transfer properties for high-efficiency photocatalysis. ACS Nano 2017, 11, 1103–1112.

52

Chen, Y.; Wang, B.; Lin, S.; Zhang, Y. F.; Wang, X. C. Activation of n →π* transitions in two-dimensional conjugated polymers for visible light photocatalysis. J. Phys. Chem. C 2014, 118, 29981–29989.

53

Jorge, A. B.; Martin, D. J.; Dhano, M. T. S.; Rahman, A. S.; Makwan, N.; Tang, J. W.; Sella, A.; Corà, F.; Firth, S.; Marr, A. J. et al. H2 and O2 evolution from water half-splitting reactions by graphitic carbon nitride materials. J. Phys. Chem. C 2013, 117, 7178–7185.

54

Scholes, G. D.; Rumbles, G. Excitons in nanoscale systems. Nat. Mater. 2006, 5, 683–696.

55

Liang, Q. H.; Li, Z.; Huang, Z. H.; Kang, F. Y.; Yang, Q. H. Holey graphitic carbon nitride nanosheets with carbon vacancies for highly improved photocatalytic hydrogen production. Adv. Funct. Mater. 2015, 25, 6885–6892.

56

Zhang, G. G.; Zhang, M. W.; Ye, X. X.; Qiu, X. Q.; Lin, S.; Wang, X. C. Iodine modified carbon nitride semiconductors as visible light photocatalysts for hydrogen evolution. Adv. Mater. 2014, 26, 805–809.

57

Sano, T.; Tsutsui, S.; Koike, K.; Hirakawa, T.; Teramoto, Y.; Negishi, N.; Takeuchi, K. Activation of graphitic carbon nitride (g-C3N4) by alkaline hydrothermal treatment for photocatalytic NO oxidation in gas phase. J. Mater. Chem. A 2013, 1, 6489–6496.

58

Guo, F.; Chen, J. L.; Zhang, M. W.; Gao, B. F.; Lin, B. Z.; Chen, Y. L. Deprotonation of g-C3N4 with Na ions for efficient nonsacrificial water splitting under visible light. J. Mater. Chem. A 2016, 4, 10806–10809.

59

Zhang, Q.; Liu, S. Z.; Zhang, Y. C.; Zhu, A. P.; Li, J.; Du, X. H. Enhancement of the photocatalytic activity of g-C3N4 via treatment in dilute NaOH aqueous solution. Mater. Lett. 2016, 171, 79–82.

Nano Research
Pages 2295-2309
Cite this article:
Zhang L, Ding N, Hashimoto M, et al. Sodium-doped carbon nitride nanotubes for efficient visible light-driven hydrogen production. Nano Research, 2018, 11(4): 2295-2309. https://doi.org/10.1007/s12274-017-1853-3

707

Views

100

Crossref

N/A

Web of Science

100

Scopus

0

CSCD

Altmetrics

Received: 19 May 2017
Revised: 04 September 2017
Accepted: 15 September 2017
Published: 19 March 2018
© Tsinghua University Press and Springer-Verlag GmbH Germany 2017
Return