Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
Single atoms are the ultimate minimum size limit for catalysts. Graphene, as an exciting, ultimately thin (one atom thick) material can be imaged in a transmission electron microscope with relatively few imaging artefacts. Here, we directly observe the behavior of single Cr atoms in graphene mono- and di-vacancies and, more importantly, at graphene edges. Similar studies at graphene edges with other elemental atoms, with the exception of Fe, show catalytic etching of graphene. Fe atoms have been shown to both etch and grow graphene. In contrast, Cr atoms are only observed to induce graphene growth. Complementary theoretical calculations illuminate the differences between Fe and Cr, and confirm single Cr atoms as superior catalysts for sp2 carbon growth.
Rümmeli, M. H.; Rocha, C. G.; Ortmann, F.; Ibrahim, I.; Sevincli, H.; Börrnert, F.; Kunstmann, J.; Bachmatiuk, A.; Pötsche, M.; Shiraishi, M. et al. Graphene: Piecing it together. Adv. Mater. 2011, 23, 4471–4490.
Al-Dulaimi, N.; Lewis, E. A.; Lewis, D. J.; Howell, S. K.; Haigh, S. J.; O'Brien, P. Sequential bottom-up and top-down processing for the synthesis of transition metal dichalcogenide nanosheets: The case of rhenium disulfide (ReS2). Chem. Commun. 2016, 52, 7878–7881.
Zhao, J.; Deng, Q.; Avdoshenko, S. M.; Fu, L.; Eckert, J.; Rümmeli, M. H. Direct in situ observations of single Fe atom catalytic processes and anomalous diffusion at graphene edges. Proc. Natl. Acad. Sci. USA 2014, 111, 15641–15646.
Qiao, B.; Wang, A. Q.; Yang, X. F.; Allard, L. F.; Jiang, Z.; Cui, Y. T.; Liu, J. Y.; Li, J.; Zhang T. Single-atom catalysis of CO oxidation using Pt1/FeOx. Nat. Chem. 2011, 3, 634–641.
Sun, S. H.; Zhang, G. X.; Gauquelin, N.; Chen, N.; Zhou, J. G.; Yang, S. L.; Chen, W. F.; Meng, X. B.; Geng, D. S.; Banis, M. N. et al. Single-atom catalysis using Pt/graphene achieved through atomic layer deposition. Sci. Rep. 2013, 3, 1775–1784.
Sun, L. T.; Banhart, F.; Warner, J. Two-dimensional materials under electron irradiation. MRS Bull. 2015, 40, 29–37.
Ramasse, Q. M.; Zan, R.; Bangert, U.; Boukhvalov, D. W.; Son, Y. W.; Novoselov, K. S. Direct experimental evidence of metal-mediated etching of suspended graphene. ACS Nano 2012, 6, 4063–4071.
Wang, W. L.; Santos, E. J. G.; Jiang, B.; Cubuk, E. D.; Ophus, C.; Centeno, A.; Pesquera, A.; Zurutuza, A.; Ciston, J.; Westervelt, R. et al. Direct observation of a long-lived single-atom catalyst chiseling atomic structures in graphene. Nano Lett. 2014, 14, 450–455.
Robertson, A. W.; Montanari, B.; He, K.; Kim, J.; Allen, C. S. Wu, Y. A.; Olivier, J.; Neethling, J.; Harrison, N.; Kirkland, A. I. et al. Dynamics of single Fe atoms in graphene vacancies. Nano Lett. 2013, 13, 1468–1475.
Zhao, L.; Ta, H. Q.; Dianat, A.; Soni, A.; Fediai, A.; Yin, W. J.; Gemming, T.; Trzebicka, B.; Cuniberti, G.; Liu, Z. F. et al. In situ electron driven carbon nanopillar-fullerene transformation through Cr atom mediation. Nano Lett. 2017, 17, 4725–4732.
Liu, Y. Y.; Dobrinsky, A.; Yakobson, B. I. Graphene edge from armchair to zigzag: The origins of nanotube chirality? Phys. Rev. Lett. 2010, 105, 235502.
Warner, J. H.; Rümmeli, M. H.; Ge, L.; Gemming, T.; Montanari, B.; Harrison, N. M.; Büchner, B.; Briggs, G. A. D. Structural transformations in graphene studied with high spatial and temporal resolution. Nat. Nanotechnol. 2009, 4, 500–504.
Hernadia, K.; Fonseca, A.; Nagya, J. B.; Bernaerts, D.; Lucas, A. A. Fe-catalyzed carbon nanotube formation. Carbon 1996, 34, 1249–1257.
Rümmeli, M. H.; Schäffel, F.; Kramberger, C.; Gemming, T.; Bachmatiuk, A.; Kalenczuk, R. J.; Rellinghaus, B.; Büchner, B.; Pichler, T. Oxide-driven carbon nanotube growth in supported catalyst CVD. J. Am. Chem. Soc. 2007, 129, 15772–15773.
An, H.; Lee, W. J.; Jung, J. Graphene synthesis on Fe foil using thermal CVD. Curr. Appl. Phys. 2011, 11, S81–S85.
Baker, R. T. K.; Harris, P. S.; Thomas, R. B.; Waite, R. J. Formation of filamentous carbon from iron, cobalt and chromium catalyzed decomposition of acetylene. J. Catal. 1973, 30, 86–95.
Robertson, J.; Hofmann, S.; Cantoro, M.; Parvez, A.; Ducati, C.; Zhong, G.; Sharma, R.; Mattevi, C. Controlling the catalyst during carbon nanotube growth. J. Nanosci. Nanotechnol. 2008, 8, 6105–6111.
Ta, H. Q.; Perello, D. J.; Duong D. L.; Han G. H.; Gorantla S.; Nguyen V. L.; Bachmatiuk, A.; Rotkin, S.V.; Lee, Y. H.; Rümmeli, M. H. Stranski−krastanov and volmer−weber CVD growth regimes to control the stacking order in bilayer graphene. Nano Lett. 2016, 16, 6403–6410.
Kresse, G.; Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 1996, 54, 11169–11186.
Kresse, G.; Furthmüller, J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 1996, 6, 15–50.
Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 3865–3868.
Mills, G.; Jónsson, H.; Schenterb, G. K. Reversible work transition state theory: Application to dissociative adsorption of hydrogen. Surf. Sci. 1995, 324, 305–337.