AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

A novel strategy to construct supported Pd nanocomposites with synergistically enhanced catalytic performances

Shuangfei Cai1Xueliang Liu1Qiusen Han1,2Cui Qi1Rong Yang1,2( )Chen Wang1,2( )
CAS Key Lab for Biomedical Effects of Nanomaterials and NanosafetyCAS center for Excellence in NanoscienceNational Center for Nanoscience and TechnologyUniversity of Chinese Academy of SciencesBeijing100190China
Sino-Danish CollegeUniversity of Chinese Academy of SciencesBeijing100190China
Show Author Information

Graphical Abstract

Abstract

We report a facile protocol for the one-pot preparation of monodisperse Pd nanoparticles (NPs) supported on ultrathin NiCl2 nanosheets (NSs). The effective protocol can be described as in situ reduction–oxidation–assembly to create Pd/NiCl2 nanocomposites and is applicable for the development of stable yet highly active Pd-based heterogeneous catalysts for organic transformations. The Pd/NiCl2 composite displayed synergistically enhanced catalytic activity, high stability, and good recyclability for the tested model oxidation reaction. The in situ nucleation and growth of NiCl2 NS around Pd NPs guaranteed a clean metal–support interface and greatly facilitated the catalytic reaction. This work provides a novel synthesis method for supported Pd nanocomposites suitable for many important applications.

Electronic Supplementary Material

Download File(s)
12274_2017_1868_MOESM1_ESM.pdf (4 MB)

References

1

Balanta, A.; Godard C.; Claver C. Pd nanoparticles for C–C coupling reactions. Chem. Soc. Rev. 2011, 40, 4973–4985.

2

Mazumder, V.; Sun, S. H. Oleylamine-mediated synthesis of Pd nanoparticles for catalytic formic acid oxidation. J. Am. Chem. Soc. 2009, 131, 4588–4589.

3

Kim, S. K.; Kim, C.; Lee, J. H.; Kim, J.; Lee, H.; Moon, S. H. Performance of shape-controlled Pd nanoparticles in the selective hydrogenation of acetylene. J. Catal. 2013, 306, 146–154.

4

Narayanan, R.; El-Sayed, M. A. Effect of catalysis on the stability of metallic nanoparticles: Suzuki reaction catalyzed by PVP-palladium nanoparticles. J. Am. Chem. Soc. 2003, 125, 8340–8347.

5

Fang, Y. X.; Wang, E. K. Simple and direct synthesis of oxygenous carbon supported palladium nanoparticles with high catalytic activity. Nanoscale 2013, 5, 1843–1848.

6

Veerakumar, P.; Madhu, R.; Chen, S. M.; Veeramani, V.; Hung, C. T.; Tang, P. H.; Wang, C. B.; Liu, S. B. Highly stable and active palladium nanoparticles supported on porous carbon for practical catalytic applications. J. Mater. Chem. A 2014, 2, 16015–16022.

7

Wang, Z. M.; Xu, C. L.; Gao, G. Q.; Li, X. Facile synthesis of well-dispersed Pd-graphene nanohybrids and their catalytic properties in 4-nitrophenol reduction. RSC Adv. 2014, 4, 13644–13651.

8

Yang, S. D.; Dong, J.; Yao, Z. H.; Shen, C. M.; Shi, X. Z.; Tian, Y.; Lin, S. X.; Zhang, X. G. One-pot synthesis of graphene-supported monodisperse Pd nanoparticles as catalyst for formic acid electro-oxidation. Sci. Rep. 2014, 4, 4501.

9

Seo, M. G.; Lee, D. W.; Han, S. S.; Lee, K. Y. Direct synthesis of hydrogen peroxide from hydrogen and oxygen over mesoporous silica-shell-coated, palladium-nanocrystal-grafted SiO2 nanobeads. ACS Catal. 2017, 7, 3039–3048.

10

Wang, Y.; Liu, J. Y.; Wang, P.; Werth, C. J.; Strathamann, T. J. Palladium nanoparticles encapsulated in core–shell silica: A structured hydrogenation catalyst with enhanced activity for reduction of oxyanion water pollutants. ACS Catal. 2014, 4, 3551–3559.

11

Pélisson, C. H.; Nakanishi, T.; Zhu, Y.; Morisato, K.; Kamei, T.; Maeno, A.; Kaji, H.; Muroyama, S.; Tafu, M.; Kanamori, K. et al. Grafted polymethylhydrosiloxane on hierarchically porous silica monoliths: A new path to monolith-supported palladium nanoparticles for continuous flow catalysis applications. ACS Appl. Mater. Interfaces 2017, 9, 406–412.

12

Cao, M. H.; Tang, Z. Y.; Liu, Q. P.; Xu, Y.; Chen, M.; Lin, H. P.; Li, Y. Y.; Gross, E.; Zhang, Q. The synergy between metal facet and oxide support facet for enhanced catalytic performance: The case of Pd-TiO2. Nano Lett. 2016, 16, 5298–5302.

13

Qu, Q.; Zhang, J. H.; Wang, J.; Li, Q. Y.; Xu, C. W.; Lu, X. H. Three-dimensional ordered mesoporous Co3O4 enhanced by Pd for oxygen evolution reaction. Sci. Rep. 2017, 7, 41542.

14

Hackett, S. F. J.; Brydson, R. M.; Gass, M. H.; Harvey, I.; Newman, A. D.; Wilson, K.; Lee, A. F. High-activity, single-site mesoporous Pd/Al2O3 catalysts for selective aerobic oxidation of allylic alcohols. Angew. Chem., Int. Ed. 2007, 119, 8747–8750.

15

Zhong, J. T.; Bin, D.; Yan, B.; Feng, Y.; Zhang, K.; Wang, J.; Wang, C. Q.; Shiraishi, Y.; Yang, P.; Du, Y. K. Highly active and durable flowerlike Pd/Ni(OH)2 catalyst for the electrooxidation of ethanol in alkaline medium. RSC Adv. 2016, 6, 72722–72727.

16

Huang, X.; Zeng, Z. Y.; Bao, S. Y.; Wang, M. F.; Qi, X. Y.; Fan, Z. X.; Zhang, H. Solution-phase epitaxial growth of noble metal nanostructures on dispersible single-layer molybdenum disulfide nanosheets. Nat. Commun. 2013, 4, 1444.

17

Yuwen, L. H.; Xu, F.; Xue, B.; Luo, Z. M.; Zhang, Q.; Bao, B. Q.; Su, S.; Weng, L. X.; Huang, W.; Wang, L. H. General synthesis of noble metal (Au, Ag, Pd, Pt) nanocrystal modified MoS2 nanosheets and the enhanced catalytic activity of Pd-MoS2 for methanol oxidation. Nanoscale 2014, 6, 5762–5769.

18

Zhao, M. T.; Deng, K.; He, L. C.; Liu, Y.; Li, G. D.; Zhao, H. J.; Tang, Z. Y. Core-shell palladium nanoparticle@metal- organic frameworks as multifunctional catalysts for cascade reactions. J. Am. Chem. Soc. 2014, 136, 1738–1741.

19

He, F.; Li, K.; Yin, C.; Wang, Y.; Tang, H.; Wu, Z. J. Single Pd atoms supported by graphitic carbon nitride, a potential oxygen reduction reaction catalyst from theoretical perspective. Carbon 2017, 114, 619–627.

20

Su, X. Y.; Vinu, A.; Aldeyab, S. S.; Zhong, L. Highly uniform Pd nanoparticles supported on g-C3N4 for efficiently catalytic Suzuki-Miyaura reactions. Catal. Lett. 2015, 145, 1388–1395.

21

Sun, J. W.; Fu, Y. S.; He, G. Y.; Sun, X. Q.; Wang, X. Green Suzuki-Miyaura coupling reaction catalyzed by palladium nanoparticles supported on graphitic carbon nitride. Appl. Catal. B: Environ. 2015, 165, 661–667.

22

Lee, J. H.; Ryu, J.; Kim, J. Y.; Nam, S. W.; Han, J. H.; Lim, T. -H.; Gautam, S.; Chae, K. H.; Yoon, C. W. Carbon dioxide mediated, reversible chemical hydrogen storage using a Pd nanocatalyst supported on mesoporous graphitic carbon nitride. J. Mater. Chem. A 2014, 2, 9490–9495.

23

Ge, J. J.; He, D. S.; Bai, L.; You, R.; Lu, H. Y.; Lin, Y.; Tan, C. L.; Kang, Y. B.; Xiao, B.; Wu, Y. E. et al. Ordered porous Pd octahedra covered with monolayer Ru atoms. J. Am. Chem. Soc. 2015, 137, 14566–14569.

24

Ge, J. J.; He, D. S.; Chen, W. X.; Ju, H. X.; Zhang, H.; Chao, T. T.; Wang, X. Q.; You, R.; Lin, Y.; Wang, Y. et al. Atomically dispersed Ru on ultrathin Pd nanoribbons. J. Am. Chem. Soc. 2016, 138, 13850–13853.

25

Mehri, A.; Kochkar, H.; Daniele, S.; Mendez, V.; Ghorbel, A.; Berhault, G. One-pot deposition of palladium on hybrid TiO2 nanoparticles and catalytic applications in hydrogenation. J. Colloid Interf. Sci. 2012, 369, 309–316.

26

Dumbuya, K.; Denecke, R.; Steinrück, H. P. Surface analysis of Pd/ZnO catalysts dispersed on micro-channeled Al-foils by XPS. Appl. Catal. A: Gen. 2008, 348, 209–213.

27

Gao, Z. H.; Liu, Z. C.; He, F.; Xu, G. H. Combined XPS and in situ DRIRS study of mechanism of Pd–Fe/α-Al2O3 catalyzed CO coupling reaction to diethyl oxalate. J. Mol. Catal. A: Chem. 2005, 235, 143–149.

28

Yan, X. D.; Tian, L. H.; Chen, X. B. Crystalline/amorphous Ni/NiO core/shell nanosheets as highly active electrocatalysts for hydrogen evolution reaction. J. Power Sources 2015, 300, 336–343.

29

Matienzo, L. J.; Yin, L. I.; Grim, S. O.; Swartz, Jr., W. E. X-ray photoelectron spectroscopy of nickel compounds. Inorg. Chem. 1973, 12, 2762–2769.

30

Mahmood, N.; Tahir, M.; Mahmood, A.; Zhu, J. H.; Cao, C. B.; Hou, Y. L. Chlorine-doped carbonated cobalt hydroxide for supercapacitors with enormously high pseudocapacitive performance and energy density. Nano Energy 2015, 11, 267–276.

31

Wu, Y. E.; Wang, D. S.; Li, Y. D. Understanding of the major reactions in solution synthesis of functional nanomaterials. Sci. China Mater. 2016, 59, 938–996.

32

Wang, D. S.; Li, Y. D. Bimetallic nanocrystals: Liquid- phase synthesis and catalytic applications. Adv. Mater. 2011, 23, 1044–1060.

33

Wang, D. S.; Li, Y. D. One-pot protocol for Au-based hybrid magnetic nanostructures via a noble-metal-induced reduction process. J. Am. Chem. Soc. 2010, 132, 6280–6281.

34

Johansson Seechurn, C. C. C.; Kitching, M. O.; Colacot, T. J.; Snieckus, V. Palladium-catalyzed cross-coupling: A historical contextual perspective to the 2010 Nobel Prize. Angew. Chem., Int. Ed. 2012, 51, 5062–5085.

35

Cai, S. F.; Jia, X. H.; Han Q. S.; Yan, X. Y.; Yang R.; Wang, C. Porous Pt/Ag nanoparticles with excellent multifunctional enzyme mimic activities and antibacterial effects. Nano Res. 2017, 10, 2056–2069.

36

Tao, Y.; Ju, E. G.; Ren, J. S.; Qu, X. G. Bifunctionalized mesoporous silica-supported gold nanoparticles: Intrinsic oxidase and peroxidase catalytic activities for antibacterial applications. Adv. Mater. 2015, 27, 1097–1104.

37

Sun, H. J.; Gao, N.; Dong, K.; Ren, J. S.; Qu, X. G. Graphene quantum dots-band-aids used for wound disinfection. ACS Nano 2014, 8, 6202–6210.

38

Xia, X. H.; Zhang, J. T.; Lu, N.; Kim, M. J.; Ghale, K.; Xu, Y.; McKenzie, E.; Liu, J. B.; Ye, H. H. Pd-Ir core-shell nanocubes: A type of highly efficient and versatile peroxidase mimic. ACS Nano 2015, 9, 9994–10004.

39

Wei, H.; Wang, E. K. Nanomaterials with enzyme-like characteristics (nanozymes): Next-generation artificial enzymes. Chem. Soc. Rev. 2013, 42, 6060–6093.

40

Tao, Y.; Lin, Y. H.; Huang, Z. Z.; Ren, J. S.; Qu, X. G. Incorporating graphene oxide and gold nanoclusters: A synergistic catalyst with surprisingly high peroxidase-like activity over a broad pH range and its application for cancer cell detection. Adv. Mater. 2013, 25, 2594–2599.

41

Acerbi, N.; Edman Tsang, S. C.; Jones, G.; Golunski, S.; Collier, P. Rationalization of interactions in precious metal/ ceria catalysts using the d-band center model. Angew. Chem. , Int. Ed. 2013, 52, 7737–7741.

42

Chen, D.; Li, C. Y.; Liu, H.; Ye, F.; Yang, J. Core-shell Au@Pd nanoparticles with enhanced catalytic activity for oxygen reduction reaction via core-shell Au@Ag/Pd constructions. Sci. Rep. 2015, 5, 11949.

43

Wang, G. L.; Xu, X. F.; Qiu, L.; Dong, Y. M.; Li, Z. J.; Zhang, C. Dual responsive enzyme mimicking activity of AgX (X = Cl, Br, I) nanoparticles and its application for cancer cell detection. ACS Appl. Mater. Interfaces 2014, 6, 6434–6442.

44

Zhang, X. D.; He, S. H.; Chen, Z. H.; Huang, Y. M. CoFe2O4 nanoparticles as oxidase mimic-mediated chemiluminescence of aqueous luminol for sulfite in white wines. J. Agric. Food Chem. 2013, 61, 840–847.

45

Cai, S. F.; Qi, C.; Li, Y. D.; Han, Q. S.; Yang, R.; Wang, C. PtCo bimetallic nanoparticles with high oxidase-like catalytic activity and their applications for magnetic-enhanced colorimetric biosensing. J. Mater. Chem. B 2016, 4, 1869– 1877.

46

Lin, T. R.; Zhong, L. S.; Guo, L. Q.; Fu, F. F.; Chen, G. N. Seeing diabetes: Visual detection of glucose based on the intrinsic peroxidase-like activity of MoS2 nanosheets. Nanoscale 2014, 6, 11856–11862.

47

Su, L.; Feng, J.; Zhou, X. M.; Ren, C. L.; Li, H. H.; Chen, X. G. Colorimetric detection of urine glucose based ZnFe2O4 magnetic nanoparticles. Anal. Chem. 2012, 84, 5753–5758.

48

Tian, J. Q.; Liu, Q.; Asiri, A. M.; Qusti, A. H.; Al-Youbi, A. O.; Sun, X. P. Ultrathin graphitic carbon nitride nanosheets: A novel peroxidase mimetic, Fe doping-mediated catalytic performance enhancement and application to rapid, highly sensitive optical detection of glucose. Nanoscale 2013, 5, 11604–11609.

49

Lin, F.; Wang, D. E.; Jiang, Z. X.; Ma, Y.; Li, J.; Li, R. G.; Li, C. Photocatalytic oxidation of thiophene on BiVO4 with dual co-catalysts Pt and RuO2 under visible light irradiation using molecular oxygen as oxidant. Energy Environ. Sci. 2012, 5, 6400–6406.

50

Voinov, M. A.; Sosa Pagán, J. O.; Morrison, E.; Smirnova, T. I.; Smirnov, A. I. Surface-mediated production of hydroxyl radicals as a mechanism of iron oxide nanoparticle biotoxicity. J. Am. Chem. Soc. 2011, 133, 35–41.

51

Solomon, L. A.; Kronenberg, J. B.; Fry, H. C. Control of heme coordination and catalytic activity by conformational changes in peptide-amphiphile assemblies. J. Am. Chem. Soc. 2017, 139, 8497–8507.

52

Gao, L. Z.; Zhuang, J.; Nie, L.; Zhang, J. B.; Zhang, Y.; Gu, N.; Wang, T. L.; Feng, J.; Yang, D. L.; Perrett, S. et al. Intrinsic peroxidase-like activity of ferromagnetic nanoparticles. Nat. Nanotechnol. 2007, 2, 577–583.

53

Chen, X. M.; Su, B. Y.; Cai, Z. X.; Chen, X.; Oyama, M. PtPd nanodendrites supported on graphene nanosheets: A peroxidase-like catalyst for colorimetric detection of H2O2. Sens. Actuat. B: Chem. 2014, 201, 286–292.

54

Liu, M.; Zhao, H. M.; Chen, S.; Yu, H. T.; Quan, X. Interface engineering catalytic graphene for smart colorimetric biosensing. ACS Nano 2012, 6, 3142–3151.

55

Zhang, L. N.; Deng, H. H.; Lin, F. L.; Xu, X. W.; Weng, S. H.; Liu, A. L.; Lin, X. H.; Xia, X. H.; Chen, W. In situ growth of porous platinum nanoparticles on graphene oxide for colorimetric detection of cancer cells. Anal. Chem. 2014, 86, 2711–2718.

Nano Research
Pages 3272-3281
Cite this article:
Cai S, Liu X, Han Q, et al. A novel strategy to construct supported Pd nanocomposites with synergistically enhanced catalytic performances. Nano Research, 2018, 11(6): 3272-3281. https://doi.org/10.1007/s12274-017-1868-9
Part of a topical collection:

769

Views

16

Crossref

N/A

Web of Science

17

Scopus

0

CSCD

Altmetrics

Received: 23 August 2017
Revised: 22 September 2017
Accepted: 27 September 2017
Published: 22 May 2018
© Tsinghua University Press and Springer‐Verlag GmbH Germany 2017
Return