AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

An additive dripping technique using diphenyl ether for tuning perovskite crystallization for high-efficiency solar cells

Di Huang1,2,3Tenghooi Goh2Yifan Zheng2Zilun Qin1,3Jiao Zhao1,3Suling Zhao1,3Zheng Xu1,3( )André D. Taylor2( )
Key Laboratory of Luminescence and Optical Information (Beijing Jiaotong University)Ministry of EducationBeijing100044China
Department of Chemical and Environmental EngineeringYale UniversityNew Haven CT06511USA
Institute of Optoelectronics TechnologyBeijing Jiaotong UniversityBeijing100044China
Show Author Information

Graphical Abstract

Abstract

Controlling the morphology of the MAPbI3-xClx active layer has remained a challenge towards advancing perovskite solar cells (PvSCs). Here, we demonstrate that a low temperature additive dripping (AD) treatment step, using diphenyl ether (DPE), can significantly improve the power conversion efficiency (PCE), compared to the control device using chlorobenzene (CB), by 15% up to 16.64%, with a high current density (JSC) of 22.67 mA/cm2. We chose DPE for its small and appropriate dipole moment to adjust the solubility of the MAPbI3-xClx precursor during the formation of the intermediate phase and the MAPbI3-xClx phase. The low DPE vapor pressure provides a longer processing window for the removal of residual dimethylformamide (DMF), during the annealing process, for improved perovskite formation. Imaging and X-ray analysis both reveal that the MAPbI3-xClx film exhibits enlarged grains with increased crystallinity. Together, these improvements result in reduced carrier recombination and hole trap-state density in the MAPbI3-xClx film, while minimizing the hysteresis problem typical of PvSCs. These results show thatthe AD approach is a promising technique for improving PvSCs.

Electronic Supplementary Material

Download File(s)
12274_2017_1894_MOESM1_ESM.pdf (775.5 KB)

References

1

Heo, J. H.; Im, S. H.; Noh, J. H.; Mandal, T. N.; Lim, C. -S.; Chang, J. A.; Lee, Y. H.; Kim, H. -J.; Sarkar, A.; Nazeeruddin, M. K. et al. Efficient inorganic-organic hybrid heterojunction solar cells containing perovskite compound and polymeric hole conductors. Nat. Photonics 2013, 7, 486-491.

2

Lee, M. M.; Teuscher, J.; Miyasaka, T.; Murakami, T. N.; Snaith, H. J. Efficient hybrid solar cells based on meso-superstructured organometal halide perovskites. Science 2012, 338, 643-647.

3

Kim, H.; Lim, K. -G.; Lee, T. -W. Planar heterojunction organometal halide perovskite solar cells: Roles of interfacial layers. Energy Environ. Sci. 2016, 9, 12-30.

4

Meng, L.; You, J. B.; Guo, T. -F.; Yang, Y. Recent advances in the inverted planar structure of perovskite solar cells. Acc. Chem. Res. 2015, 49, 155-165.

5

Saliba, M.; Matsui, T.; Seo, J. -Y.; Domanski, K.; Correa-Baena, J. -P.; Nazeeruddin, M. K.; Zakeeruddin, S. M.; Tress, W.; Abate, A.; Hagfeldt, A. et al. Cesium-containing triple cation perovskite solar cells: Improved stability, reproducibility and high efficiency. Energy Environ. Sci. 2016, 9, 1989-1997.

6

Mei, A. Y.; Li, X.; Liu, L. F.; Ku, Z. L.; Liu, T. F.; Rong, Y. G.; Xu, M.; Hu, M.; Chen, J. Z.; Yang, Y. et al. A hole-conductor-free, fully printable mesoscopic perovskite solar cell with high stability. Science 2014, 345, 295-298.

7

Ball, J. M.; Lee, M. M.; Hey, A.; Snaith, H. J. Low-temperature processed meso-superstructured to thin-film perovskite solar cells. Energy Environ. Sci. 2013, 6, 1739-1743.

8

Jeng, J. Y.; Chiang, Y. F.; Lee, M. H.; Peng, S. R.; Guo, T. F.; Chen, P.; Wen, T. C. CH3NH3PbI3 perovskite/fullerene planar-heterojunction hybrid solar cells. Adv. Mater. 2013, 25, 3727-3732.

9

Gong, X.; Li, M.; Shi, X. B.; Ma, H.; Wang, Z. K.; Liao, L. S. Controllable perovskite crystallization by water additive for high-performance solar cells. Adv. Funct. Mater. 2015, 25, 6671-6678.

10

Li, Y.; Xu, Z.; Zhao, S. L.; Qiao, B.; Huang, D.; Zhao, L.; Zhao, J.; Wang, P.; Zhu, Y. Q.; Li, X. G. et al. Highly efficient p-i-n perovskite solar cells utilizing novel low-temperature solution-processed hole transport materials with linear π-conjugated structure. Small 2016, 12, 4902-4908.

11

Xiao, Z. G.; Bi, C.; Shao, Y. C.; Dong, Q. F.; Wang, Q.; Yuan, Y. B.; Wang, C. G.; Gao, Y. L.; Huang, J. S. Efficient, high yield perovskite photovoltaic devices grown by interdiffusion of solution-processed precursor stacking layers. Energy Environ. Sci. 2014, 7, 2619-2623.

12

Hsiao, S. Y.; Lin, H. L.; Lee, W. H.; Tsai, W. L.; Chiang, K. M.; Liao, W. Y.; Ren-Wu, C. Z.; Chen, C. Y.; Lin, H. W. Efficient all-vacuum deposited perovskite solar cells by controlling reagent partial pressure in high vacuum. Adv. Mater. 2016, 28, 7013-7019.

13

Xiao, M. D.; Huang, F. Z.; Huang, W. C.; Dkhissi, Y.; Zhu, Y.; Etheridge, J.; Gray-Weale, A.; Bach, U.; Cheng, Y. B.; Spiccia, L. A fast deposition-crystallization procedure for highly efficient lead iodide perovskite thin-film solar cells. Angew. Chem. 2014, 126, 10056-10061.

14

Sun, S. Y.; Salim, T.; Mathews, N.; Duchamp, M.; Boothroyd, C.; Xing, G. C.; Sum, T. C.; Lam, Y. M. The origin of high efficiency in low-temperature solution-processable bilayer organometal halide hybrid solar cells. Energy Environ. Sci. 2014, 7, 399-407.

15

Liang, P. W.; Liao, C. Y.; Chueh, C. C.; Zuo, F.; Williams, S. T.; Xin, X. K.; Lin, J.; Jen, A. K. Y. Additive enhanced crystallization of solution-processed perovskite for highly efficient planar-heterojunction solar cells. Adv. Mater. 2014, 26, 3748-3754.

16

Song, X.; Wang, W. W.; Sun, P.; Ma, W. L.; Chen, Z. -K. Additive to regulate the perovskite crystal film growth in planar heterojunction solar cells. Appl. Phys. Lett. 2015, 106, 033901.

17

Wei, Q. B.; Yang, D.; Yang, Z.; Ren, X. D.; Liu, Y. C.; Feng, J. S.; Zhu, X. J.; Liu, S. Z. Effective solvent-additive enhanced crystallization and coverage of absorber layers for high efficiency formamidinium perovskite solar cells. RCS Adv. 2016, 6, 56807-56811.

18

Kim, H.; Jeong, H.; Lee, J. K. Highly efficient, reproducible, uniform (CH3NH3)PbI3 layer by processing additive dripping for solution-processed planar heterojunction perovskite solar cells. Chem. -Asian J. 2016, 11, 2399-2405.

19

Li, N.; Brabec, C. J. Air-processed polymer tandem solar cells with power conversion efficiency exceeding 10%. Energy Environ. Sci. 2015, 8, 2902-2909.

20

Tremolet de Villers, B. J.; O'Hara, K. A.; Ostrowski, D. P.; Biddle, P. H.; Shaheen, S. E.; Chabinyc, M. L.; Olson, D. C.; Kopidakis, N. Removal of residual diiodooctane improves photostability of high-performance organic solar cell polymers. Chem. Mater. 2016, 28, 876-884.

21

Ye, L.; Jing, Y.; Guo, X.; Sun, H.; Zhang, S. Q.; Zhang, M. J.; Huo, L. J.; Hou, J. H. Remove the residual additives toward enhanced efficiency with higher reproducibility in polymer solar cells. J. Phys. Chem. C 2013, 117, 14920-14928.

22

Lee, S.; Kong, J.; Lee, K. Air-stable organic solar cells using an iodine-free solvent additive. Adv. Energy Mater. 2016, 6, 1600970.

23

Chae, G. J.; Jeong, S. -H.; Baek, J. H.; Walker, B.; Song, C. K.; Seo, J. H. Improved performance in TIPS-pentacene field effect transistors using solvent additives. J. Mater. Chem. C 2013, 1, 4216-4221.

24

Zheng, Y. F.; Goh, T.; Fan, P.; Shi, W.; Yu, J. S.; Taylor, D. A. Toward efficient thick active PTB7 photovoltaic layers using diphenyl ether as a solvent additive. ACS Appl. Mater. Interfaces 2016, 8, 15724-15731.

25

Zhao, J.; Zhao, S. L.; Xu, Z.; Qiao, B.; Huang, D.; Zhao, L.; Li, Y.; Zhu, Y. Q.; Wang, P. Revealing the effect of additives with different solubility on the morphology and the donor crystalline structures of organic solar cells. ACS Appl. Mater. Interfaces 2016, 8, 18231-18237.

26

Nguyen, T. L.; Choi, H.; Ko, S. -J.; Uddin, M. A.; Walker, B.; Yum, S.; Jeong, J. -E.; Yun, M. H.; Shin, T. J.; Hwang, S. et al. Semi-crystalline photovoltaic polymers with efficiency exceeding 9% in a ~300 nm thick conventional single-cell device. Energy Environ. Sci. 2014, 7, 3040-3051.

27

Choi, H.; Ko, S. J.; Kim, T.; Morin, P. O.; Walker, B.; Lee, B. H.; Leclerc, M.; Kim, J. Y.; Heeger, A. J. Small-bandgap polymer solar cells with unprecedented short-circuit current density and high fill factor. Adv. Mater. 2015, 27, 3318-3324.

28

Jeon, N. J.; Noh, J. H.; Kim, Y. C.; Yang, W. S.; Ryu, S.; Seok, S. I. Solvent engineering for high-performance inorganic-organic hybrid perovskite solar cells. Nat. Mater. 2014, 13, 897-903.

29

Fahlbusch, K. G.; Hammerschmidt, F. J.; Panten, J.; Pickenhagen, W.; Schatkowski, D.; Bauer, K.; Garbe, D.; Surburg, H. Flavors and fragrances. In Ullmann's Encyclopedia of Industrial Chemistry. Wiley-VCH, Weinheim, 2002.

30

Dualeh, A.; Tétreault, N.; Moehl, T.; Gao, P.; Nazeeruddin, M. K.; Grätzel, M. Effect of annealing temperature on film morphology of organic-inorganic hybrid pervoskite solid-state solar cells. Adv. Funct. Mater. 2014, 24, 3250-3258.

31

Wu, Y. Z.; Islam, A.; Yang, X. D.; Qin, C. J.; Liu, J.; Zhang, K.; Peng, W. Q.; Han, L. Y. Retarding the crystallization of PbI2 for highly reproducible planar-structured perovskite solar cells via sequential deposition. Energy Environ. Sci. 2014, 7, 2934-2938.

32

Colella, S.; Mosconi, E.; Fedeli, P.; Listorti, A.; Gazza, F.; Orlandi, F.; Ferro, P.; Besagni, T.; Rizzo, A.; Calestani, G. et al. MAPbI3-xClx mixed halide perovskite for hybrid solar cells: The role of chloride as dopant on the transport and structural properties. Chem. Mater. 2013, 25, 4613-4618.

33

Tan, K. W.; Moore, D. T.; Saliba, M.; Sai, H.; Estroff, L. A.; Hanrath, T.; Snaith, H. J.; Wiesner, U. Thermally induced structural evolution and performance of mesoporous block copolymer-directed alumina perovskite solar cells. ACS Nano 2014, 8, 4730-4739.

34

Ren, X. D.; Yang, Z.; Yang, D.; Zhang, X.; Cui, D.; Liu, Y. C.; Wei, Q. B.; Fan, H. B.; Liu, S. Z. Modulating crystal grain size and optoelectronic properties of perovskite films for solar cells by reaction temperature. Nanoscale 2016, 8, 3816-3822.

35

Sun, W. H.; Li, Y. L.; Xiao, Y.; Zhao, Z. R.; Ye, S. Y.; Rao, H. X.; Ting, H.; Bian, Z. Q.; Xiao, L. X.; Huang, C. H. et al. An ammonia modified PEDOT: PSS for interfacial engineering in inverted planar perovskite solar cells. Org. Electron. 2017, 46, 22-27.

36

Bi, C.; Wang, Q.; Shao, Y.; Yuan, Y. B.; Xiao, Z. G.; Huang, J. S. Non-wetting surface-driven high-aspect-ratio crystalline grain growth for efficient hybrid perovskite solar cells. Nat. Commun. 2015, 6, 7747.

37

Wetzelaer, G. -J. A. H.; Max, S.; Araceli Miquel, S.; Cristina, M.; Jorge, Á.; Bolink, J. H. Trap-assisted non-radiative recombination in organic-inorganic perovskite solar cells. Adv. Mater. 2015, 27, 1837-1841.

38

Shao, Y. C.; Xiao, Z. G.; Bi, C.; Yuan, Y. B.; Huang, J. S. Origin and elimination of photocurrent hysteresis by fullerene passivation in CH3NH3PbI3 planar heterojunction solar cells. Nat. Commun. 2014, 5, 5784.

39

Yamada, Y.; Nakamura, T.; Endo, M.; Wakamiya, A.; Kanemitsu, Y. Photocarrier recombination dynamics in perovskite CH3NH3PbI3 for solar cell applications. J. Am. Chem. Soc. 2014, 136, 11610-11613.

40

Ke, W. J.; Zhao, D. W.; Grice, C. R.; Cimaroli, A. J.; Ge, J.; Tao, H.; Lei, H. W.; Fang, G. J.; Yan, Y. F. Efficient planar perovskite solar cells using room-temperature vacuum-processed C60 electron selective layers. J. Mater. Chem. A 2015, 3, 17971-17976.

41

Huang, D.; Goh, T.; Kong, J.; Zheng, Y. F.; Zhao, S. L.; Xu, Z.; Taylor, A. D. Perovskite solar cells with a DMSO-treated PEDOT: PSS hole transport layer exhibit higher photovoltaic performance and enhanced durability. Nanoscale 2017, 9, 4236-4243.

42

Heo, J. H.; Song, D. H.; Han, H. J.; Kim, S. Y.; Kim, J. H.; Kim, D.; Shin, H. W.; Ahn, T. K.; Wolf, C.; Lee, T. W. et al. Planar CH3NH3PbI3 perovskite solar cells with constant 17.2% average power conversion efficiency irrespective of the scan rate. Adv. Mater. 2015, 27, 3424-3430.

43

Wu, B.; Fu, K. W.; Yantara, N.; Xing, G. C.; Sun, S. Y.; Sum, T. C.; Mathews, N. Charge accumulation and hysteresis in perovskite-based solar cells: An electro-optical analysis. Adv. Energy Mater. 2015, 5, 1500829.

44

Unger, E. L.; Hoke, E. T.; Bailie, C. D.; Nguyen, W. H.; Bowring, A. R.; Heumüller, T.; Christoforo, M. G.; McGehee, M. D. Hysteresis and transient behavior in current-voltage measurements of hybrid-perovskite absorber solar cells. Energy Environ. Sci. 2014, 7, 3690-3698.

45

Sanchez, R. S.; Gonzalez-Pedro, V.; Lee, J. -W.; Park, N. -G.; Kang, Y. S.; Mora-Sero, I.; Bisquert, J. Slow dynamic processes in lead halide perovskite solar cells. Characteristic times and hysteresis. J. Phys. Chem. Lett. 2014, 5, 2357-2363.

46

Bube, R. H. Trap density determination by space-charge-limited currents. J. Appl. Phys. 1962, 33, 1733-1737.

47

Poglitsch, A.; Weber, D. Dynamic disorder in methylammoniumtrihalogenoplumbates (Ⅱ) observed by millimeter-wave spectroscopy. J. Chem. Phys. 1987, 87, 6373-6378.

48

Xiao, Z. G.; Dong, Q. F.; Bi, C.; Shao, Y. C.; Yuan, Y. B.; Huang, J. S. Solvent annealing of perovskite-induced crystal growth for photovoltaic-device efficiency enhancement. Adv. Mater. 2014, 26, 6503-6509.

49

Yang, D.; Yang, R. X.; Ren, X. D.; Zhu, X. J.; Yang, Z.; Li, C.; Liu, S. Z. Hysteresis-suppressed high-efficiency flexible perovskite solar cells using solid-state ionic-liquids for effective electron transport. Adv. Mater. 2016, 28, 5206-5213.

Nano Research
Pages 2648-2657
Cite this article:
Huang D, Goh T, Zheng Y, et al. An additive dripping technique using diphenyl ether for tuning perovskite crystallization for high-efficiency solar cells. Nano Research, 2018, 11(5): 2648-2657. https://doi.org/10.1007/s12274-017-1894-7

652

Views

12

Crossref

N/A

Web of Science

12

Scopus

3

CSCD

Altmetrics

Received: 05 July 2017
Revised: 09 October 2017
Accepted: 20 October 2017
Published: 12 May 2018
© Tsinghua University Press and Springer-Verlag GmbH Germany 2017
Return