Graphical Abstract

Moore's law is approaching its physical limit. Tunneling field-effect transistors (TFETs) based on 2D materials provide a possible scheme to extend Moore's lawdown to the sub-10-nm region owing to the electrostatic integrity and absence of dangling bonds in 2D materials. We report an ab initio quantum transport study on the device performance of monolayer (ML) black phosphorene (BP)TFETs in the sub-10-nm scale (6–10 nm). Under the optimal schemes, the ML BP TFETs show excellent device performance along the armchair transport direction.The on-state current, delay time, and power dissipation of the optimal sub-10-nm ML BP TFETs significantly surpass the latest International Technology Roadmap for Semiconductors (ITRS) requirements for high-performance devices. The subthreshold swings are 56–100 mV/dec, which are much lower than those of their Schottky barrier and metal oxide semiconductor field-effect transistor counterparts.
Quinn, J. J.; Kawamoto, G.; Mccombe, B. D. Subband spectroscopy by surface channel tunneling. Surf. Sci. 1978, 73, 190–196.
Ionescu, A. M.; Riel, H. Tunnel field-effect transistors as energy- efficient electronic switches. Nature 2011, 479, 329–337.
Lu, H.; Seabaugh, A. Tunnel field-effect transistors: State-of-the-art. IEEE J. Electron. Dev. Sci. 2014, 2, 44–49.
Fiori, G.; Bonaccorso, F.; Iannaccone, G.; Palacios, T.; Neumaier, D.; Seabaugh, A.; Banerjee, S. K.; Colombo, L. Electronics based on two-dimensional materials. Nat. Nanotechnol. 2014, 9, 768–779.
Chhowalla, M.; Jena, D.; Zhang, H. Two-dimensional semiconductors for transistors. Nat. Rev. Mater. 2016, 1, 16052.
Schwierz, F.; Pezoldt, J.; Granzner, R. Two-dimensional materials and their prospects in transistor electronics. Nanoscale 2015, 7, 8261–8283.
Allain, A.; Kang, J.; Banerjee, K.; Kis, A. Electrical contacts to two-dimensional semiconductors. Nat. Mater. 2015, 14, 1195–1205.
Akinwande, D.; Petrone, N.; Hone, J. Two-dimensional flexible nanoelectronics. Nat. Commun. 2014, 5, 5678.
Léonard, F.; Talin, A. A. Electrical contacts to one- and two- dimensional nanomaterials. Nat. Nanotechnol. 2011, 6, 773–783.
Kang, J. H.; Liu, W.; Sarkar, D.; Jena, D.; Banerjee, K. Computational study of metal contacts to monolayer transition-metal dichalcogenide semiconductors. Phys. Rev. X 2014, 4, 031005.
Das, S.; Zhang, W.; Demarteau, M.; Hoffmann, A.; Dubey, M.; Roelofs, A. Tunable transport gap in phosphorene. Nano Lett. 2014, 14, 5733–5739.
Li, L. K.; Yu, Y. J.; Ye, G. J.; Ge, Q. Q.; Ou, X. D.; Wu, H.; Feng, D. L.; Chen, X. H.; Zhang, Y. B. Black phosphorus field-effect transistors. Nat. Nanotechnol. 2014, 9, 372–377.
Liu, H.; Neal, A. T.; Zhu, Z.; Luo, Z.; Xu, X. F.; Tománek, D.; Ye, P. D. Phosphorene: An unexplored 2D semiconductor with a high hole mobility. ACS Nano 2014, 8, 4033–4041.
Chang, J.; Hobbs, C. Theoretical study of phosphorene tunneling field effect transistors. Appl. Phys. Lett. 2015, 106, 083509.
Liu, F.; Shi, Q.; Wang, J.; Guo, H. Device performance simulations of multilayer black phosphorus tunneling transistors. Appl. Phys. Lett. 2015, 107, 203501.
Desai, S. B.; Madhvapathy, S. R.; Sachid, A. B.; Llinas, J. P.; Wang, Q. X.; Ahn, G. H.; Pitner, G.; Kim, M. J.; Bokor, J.; Hu, C. et al. MoS2 transistors with 1-nanometer gate lengths. Science 2016, 354, 99–102.
Nourbakhsh, A.; Zubair, A.; Sajjad, R. N.; Amir Tavakkoli, K. G.; Chen, W.; Fang, S.; Ling, X.; Kong, J.; Dresselhaus, M. S.; Kaxiras, E. et al. MoS2 field-effect transistor with sub-10 nm channel length. Nano Lett. 2016, 16, 7798–7806.
Xu, K.; Chen, D. X.; Yang, F. Y.; Wang, Z. X.; Yin, L.; Wang, F.; Cheng, R. Q.; Liu, K. H.; Xiong, J.; Liu, Q. et al. Sub-10 nm nanopatterns architecture for 2D materials field-effect transistors. Nano Lett. 2017, 17, 1065–1070.
Xie, L.; Liao, M. Z.; Wang, S. P.; Yu, H.; Du, L. J.; Tang, J.; Zhao, J.; Zhang, J.; Chen, P.; Lu, X. B. et al. Graphene-contacted ultrashort channel monolayer MoS2 transistors. Adv. Mater. 2017, 29, 1702522.
Brandbyge, M.; Mozos, J. L.; Ordejón, P.; Taylor, J.; Stokbro, K. Density-functional method for nonequilibrium electron transport. Phys. Rev. B 2002, 65, 165401.
Soler, J. M.; Artacho, E.; Gale, J. D.; García, A.; Junquera, J.; Ordejón, P.; Sánchez-Portal, D. The SIESTA method for ab initio order-N materials simulation. J. Phys. Condens. Matt. 2002, 14, 2745–2779.
Monkhorst, H. J.; Pack, J. D. Special points for Brillouin-zone integrations. Phys. Rev. B 1976, 13, 5188–5192.
Çakır, D.; Peeters, F. M. Dependence of the electronic and transport properties of metal-MoSe2 interfaces on contact structures. Phys. Rev. B 2014, 89, 245403.
Datta, S. Electronic Transport in Mesoscopic Systems; Cambridge University Press: Cambridge, England, 1997.
Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 3865–3868.
Zhong, H. X.; Quhe, R. G.; Wang, Y. Y.; Ni, Z. Y.; Ye, M.; Song, Z. G.; Pan, Y. Y.; Yang, J. B.; Yang, L.; Lei, M. et al. Interfacial properties of monolayer and bilayer MoS2 contacts with metals: Beyond the energy band calculations. Sci. Rep. 2016, 6, 21786.
Wang, Y. Y.; Yang, R. X.; Quhe, R. H.; Zhong, H. X.; Cong, L. X.; Ye, M.; Ni, Z. Y.; Song, Z. G.; Yang, J. B.; Shi, J. J. et al. Does p-type ohmic contact exist in WSe2-metal interfaces? Nanoscale 2015, 8, 1179–1191.
Pan, Y. Y.; Dan, Y.; Wang, Y. Y.; Ye, M.; Zhang, H.; Quhe, R. H.; Zhang, X. Y.; Li, J. Z.; Guo, W. L.; Yang, L. et al. Schottky barriers in bilayer phosphorene transistors. ACS Appl. Mater. Interfaces 2017, 9, 12694–12705.
Pan, Y. Y.; Wang, Y. Y.; Ye, M.; Quhe, R. H.; Zhong, H. X.; Song, Z. G.; Peng, X. Y.; Yu, D. P.; Yang, J. B.; Shi, J. J. et al. Monolayer phosphorene–metal contacts. Chem. Mater. 2016, 28, 2100–2109.
Zhang, X. Y.; Pan, Y. Y.; Ye, M.; Quhe, R. H.; Wang, Y. Y.; Guo, Y.; Zhang, H.; Dan, Y.; Song, Z. G.; Li, J. Z. et al. Three-layer phosphorene-metal interfaces. Nano Res. 2018, 11, 707–721.
Yoon, Y. J.; Seo, J. H.; Cho, S.; Kwon, H. I.; Lee, J. H.; Kang, I. M. Sub-10 nm Ge/GaAs heterojunction-based tunneling field- effect transistor with vertical tunneling operation for ultra-low- power applications. J. Semicond. Technol. Sci. 2016, 16, 172–178.
Chien, N. D.; Shih, C. H. Short channel effects in tunnel field-effect transistors with different configurations of abrupt and graded Si/SiGe heterojunctions. Superlatt. Microst. 2016, 100, 857–866.
Jiang, X. W.; Luo, J. W.; Li, S. S.; Wang, L. W. How good is mono-layer transition-metal dichalcogenide tunnel field-effect transistors in sub-10 nm?—An ab initio simulation study. In Proceedings of 2015 IEEE International Electron Devices Meeting (IEDM), Washington, DC, USA, 2015.
Quhe, R. H.; Peng, X. Y.; Pan, Y. Y.; Ye, M.; Wang, Y. Y.; Zhang, H.; Feng, S. Y.; Zhang, Q. X.; Shi, J. J.; Yang, J. B. et al. Can a black phosphorus schottky-barrier transistor be good enough? ACS Appl. Mater. Interfaces 2017, 9, 3959–3966.
Cao, W.; Kang, J. H.; Sarkar, D.; Liu, W.; Banerjee, K. 2D semiconductor FETs—Projections and design for sub-10 nm VLSI. IEEE Trans. Electron. Dev. 2015, 62, 3459–3469.
Szabo, A.; Rhyner, R.; Carrillo-Nunez, H.; Luisier, M. Phonon-limited performance of single-layer, single-gate black phosphorus n- and p-type field-effect transistors. In Proceedings of 2015 IEEE International Electron Devices Meeting (IEDM), Washington, DC, USA, 2015.
Yin, D. M.; Han, G.; Yoon, Y. Scaling limit of bilayer phosphorene FETs. IEEE Electron Dev. Lett. 2015, 36, 978–980.
Ni, Z. Y.; Ye, M.; Ma, J. H.; Wang, Y. Y.; Quhe, R. H.; Zheng, J. X.; Dai, L.; Yu, D. P.; Shi, J. J.; Yang, J. B. et al. Performance upper limit of sub-10 nm monolayer MoS2 transistors. Adv. Electron Mater. 2016, 2, 1600191.
Liu, F.; Wang, Y J. .; Liu, X. Y.; Wang, J.; Guo, H. Ballistic transport in monolayer black phosphorus transistors. IEEE Trans. Electron Dev. 2014, 61, 3871–3876.
Brent, J. R.; Savjani, N.; Lewis, E. A.; Haigh, S. J.; Lewis, D. J.; O'Brien, P. Production of few-layer phosphorene by liquid exfoliation of black phosphorus. Chem. Commun. 2014, 50, 13338–13341.
Yasaei, P.; Kumar, B.; Foroozan, T.; Wang, C. H.; Asadi, M.; Tuschel, D.; Indacochea, J. E.; Klie, R. F.; Salehi-Khojin, A. High-quality black phosphorus atomic layers by liquid-phase exfoliation. Adv. Mater. 2015, 27, 1887–1892.
Yang, Z. B.; Hao, J. H.; Yuan, S. G.; Lin, S. H.; Yau, H. M.; Dai, J. Y.; Lau, S. P. Field-effect transistors based on amorphous black phosphorus ultrathin films by pulsed laser deposition. Adv. Mater. 2015, 27, 3748–3754.
Lu, W. L.; Nan, H. Y.; Hong, J. H.; Chen, Y. N.; Zhu, C.; Liang, Z.; Ma, X. Y.; Ni, Z. H.; Jin, C. H.; Zhang, Z. Plasma-assisted fabrication of monolayer phosphorene and its Raman characterization. Nano Res. 2014, 7, 853–859.
Akhtar, M.; Anderson, G.; Zhao, R.; Alruqi, A.; Mroczkowska, J. E.; Sumanasekera, G.; Jasinski, J. B. Recent advances in synthesis, properties, and applications of phosphorene. NPJ 2D Mater. Appl. 2017, 1, 5.
Xiang, D.; Han, C.; Wu, J.; Zhong, S.; Liu, Y. Y.; Lin, J. D.; Zhang, X. A.; Hu, W. P.; Özyilmaz, B.; Neto, A. H. C. et al. Surface transfer doping induced effective modulation on ambipolar characteristics of few-layer black phosphorus. Nat. Commun. 2015, 6, 6485.
Koenig, S. P.; Doganov, R. A.; Seixas, L.; Carvalho, A.; Tan, J. Y.; Watanabe, K.; Taniguchi, T.; Yakovlev, N.; Neto, A. H. C.; Özyilmaz, B. Electron doping of ultrathin black phosphorus with Cu adatoms. Nano Lett. 2016, 16, 2145–2151.
Yang, B. C.; Wan, B. S.; Zhou, Q. H.; Wang, Y.; Hu, W. T.; Lv, W. M.; Chen, Q.; Zeng, Z. M.; Wen, F. S.; Xiang, J. Y. et al. Te-doped black phosphorus field-effect transistors. Adv. Mater. 2016, 28, 9408–9415.
Xu, Y. J.; Yuan, J.; Fei, L. F.; Wang, X. L.; Bao, Q. L.; Wang, Y.; Zhang, K.; Zhang, Y. G. Selenium-doped black phosphorus for high-responsivity 2D photodetectors. Small 2016, 12, 5000–5007.
Buscema, M.; Groenendijk, D. J.; Steele, G. A.; van der Zant, H. S.; Castellanos-Gomez, A. Photovoltaic effect in few-layer black phosphorus PN junctions defined by local electrostatic gating. Nat. Commun. 2014, 5, 4651.
Robbins, M. C.; Koester, S. J. Black phosphorus p-and n-MOSFETs with electrostatically doped contacts. IEEE Electron Dev. Lett. 2017, 38, 285–288.