AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

High-purity helical carbon nanotubes by trace-water-assisted chemical vapor deposition: Large-scale synthesis and growth mechanism

Fanbin Meng1Ying Wang1Qiang Wang1Xiaoling Xu1Man Jiang1Xuesong Zhou2Ping He2Zuowan Zhou1( )
Key Laboratory of Advanced Technologies of Materials (Ministry of Education)School of Materials Science and EngineeringSouthwest Jiaotong UniversityChengdu610031China
Zhonghao Heiyuan Research Institute of Chemical IndustryZigong643201China
Show Author Information
An erratum to this article is available online at:

Graphical Abstract

Abstract

Helical carbon nanotubes (HCNTs) are highly desirable due to their unique geometrical elegance and inherent physical properties; however, high-efficiency synthesis of high-purity HCNTs with high yield and full elucidation of their growth mechanism remains challenging. Traditional methods to achieve the high-yield growth of HCNTs mainly focus on controlling the size of catalytic particles. Herein, we found that addition of trace water greatly benefits large-scale synthesis of HCNTs. Uniform HCNTs with ~ 100% purity can be obtained, and the yield of HCNTs can reach ~ 8, 078% in a run of 6 h, much higher than that obtained without trace water and any of the reported yields. Experiments and theoretical simulations are performed to reveal that the trace water can react with the dangling bond on carbon, thus inhibiting the generation of amorphous species. Furthermore, the trace water can enhance the anisotropy of the catalyst surface. This results in different segregation rates of carbon atoms coming out of different crystal planes and further periodic mismatch of the graphite layers, thus leading to the formation of HCNTs. Therefore, this new and efficient method is promising for practical, large-scale production of HCNTs.

Electronic Supplementary Material

Download File(s)
12274_2017_1897_MOESM1_ESM.pdf (2 MB)

References

1

Amelinckx, S.; Zhang, X. B.; Bernaerts, D.; Zhang, X. F.; Ivanov, V.; Nagy, J. B. A formation mechanism for catalytically grown helix-shaped graphite nanotubes. Science 1994, 265, 635-639.

2

Zeng, Q.; Tian, H. Q.; Jiang, J.; Ji, X. B.; Gao, D. J.; Wang, C. High-purity helical carbon nanotubes with enhanced electrochemical properties for supercapacitors. RSC Adv. 2017, 7, 7375-7381.

3

Tang, N. J.; Wen, J. F.; Zhang, Y.; Liu, F. X.; Lin, K.; Du, Y. W. Helical carbon nanotubes: Catalytic particle size- dependent growth and magnetic properties. ACS Nano 2010, 4, 241-250.

4

Jian, X.; Jiang, M.; Zhou, Z. W.; Zeng, Q.; Lu, J.; Wang, D. C.; Zhu, J. T.; Gou, J. H.; Wang, Y.; Hui, D. et al. Gas-induced formation of Cu nanoparticle as catalyst for high-purity straight and helical carbon nanofibers. ACS Nano 2012, 6, 8611-8619.

5

Wang, G. Z.; Ran, G.; Wan, G. P.; Yang, P.; Gao, Z.; Lin, S. W.; Fu, C.; Qin, Y. Size-selective catalytic growth of nearly 100% pure carbon nanocoils with copper nanoparticles produced by atomic layer deposition. ACS Nano 2014, 8, 5330-5338.

6

Wang, G. Z.; Gao, Z.; Tang, S. W.; Chen, C. Q.; Duan, F. F.; Zhao, S. C.; Lin, S. W.; Feng, Y. H.; Zhou, L.; Qin, Y. Microwave absorption properties of carbon nanocoils coated with highly controlled magnetic materials by atomic layer deposition. ACS Nano 2012, 6, 11009-11017.

7

Tsou, T. Y.; Lee, C. Y.; Chiu, H. T. K and Au bicatalyst assisted growth of carbon nanocoils from acetylene: Effect of deposition parameters on field emission properties. ACS Appl. Mater. Interfaces 2012, 4, 6505-6511.

8

Celorrio, V.; Calvillo, L.; Martínez-Huerta, M. V.; Moliner, R.; Lázaro, M. J. Study of the synthesis conditions of carbon nanocoils for energetic applications. Energy Fuels 2010, 24, 3361-3365.

9

Xue, J. J.; Ma, S. S.; Zhou, Y. M.; Zhang, Z. W.; Wu, X.; She, C. Q. Facile synthesis of Ag2O/N-doped helical carbon nanotubes with enhanced visible-light photocatalytic activity. RSC Adv. 2015, 5, 3122-3129.

10

Tian, X.; Wang, Q.; Chen, X. N.; Yang, W. Q.; Wu, Z. Q.; Xu, X. L.; Jiang, M.; Zhou, Z. W. Enhanced performance of core-shell structured polyaniline at helical carbon nanotube hybrids for ammonia gas sensor. Appl. Phys. Lett. 2014, 105, 203109.

11

Chen, X. Q.; Motojima, S. Morphologies of carbon micro- coils grown by chemical vapor deposition. J. Mater. Sci. 1999, 34, 5519-5524.

12

Chen, Y.; Liu, C.; Du, J. H.; Cheng, H. M. Preparation of carbon microcoils by catalytic decomposition of acetylene using nickel foam as both catalyst and substrate. Carbon 2005, 43, 1874-1878.

13

Motojima, S.; Hasegawa, I.; Kagiya, S.; Momiyama, M.; Kawaguchi, M.; Iwanaga, H. Preparation of coiled carbon fibers by pyrolysis of acetylene using a Ni catalyst and sulfur or phosphorus compound impurity. Appl. Phys. Lett. 1993, 62, 2322-2323.

14

Nitze, F.; Abou-Hamad, E.; Wågberg, T. Carbon nanotubes and helical carbon nanofibers grown by chemical vapour deposition on C60 fullerene supported Pd nanoparticles. Carbon 2011, 49, 1101-1107.

15

Hata, K.; Futaba, D. N.; Mizuno, K.; Namai, T.; Yumura, M.; Iijima, S. Water-assisted highly efficient synthesis of impurity-free single-walled carbon nanotubes. Science 2004, 306, 1362-1364.

16

Otsuka, K.; Inoue, T.; Shimomura, Y.; Chiashi, C.; Maruyama, S. Water-assisted self-sustained burning of metallic single- walled carbon nanotubes for scalable transistor fabrication. Nano Res. 2017, 10, 3248-3260.

17

Guo, W.; Jing, F.; Xiao, J.; Zhou, C.; Lin, Y. W.; Wang, S. Oxidative-etching-assisted synthesis of centimeter-sized single- crystalline graphene. Adv. Mater. 2016, 28, 3152-3158.

18

Liang, T.; Luan, C. Y.; Chen, H. Z.; Xu, M. S. Exploring oxygen in graphene chemical vapor deposition synthesis. Nanoscale 2017, 9, 3719-3735.

19

Perdew, J. P.; Wang, Y. Accurate and simple analytic representation of the electron-gas correlation energy. Phys. Rev. B. 1992, 45, 13244-13249.

20

Delley, B. From molecules to solids with the DMol3 approach. J. Chem. Phys. 2000, 113, 7756-7764.

21

Qi, X. S.; Zhong, W.; Deng, Y.; Au, C.; Du, Y. W. Synthesis of helical carbon nanotubes, worm-like carbon nanotubes and nanocoils at 450 ℃ and their magnetic properties. Carbon 2010, 48, 365-376.

22

Tang, N. J.; Zhong, W.; Au, C.; Gedanken, A.; Yang, Y.; Du, Y. W. Large-scale synthesis, annealing, purification, and magnetic properties of crystalline helical carbon nanotubes with symmetrical structures. Adv. Funct. Mater. 2007, 17, 1542-1550.

23

Neyts, E. C.; Duin, A. C. T. V.; Bogaerts, A. Changing chirality during single-walled carbon nanotube growth: A reactive molecular dynamics/Monte Carlo study. J. Am. Chem. Soc. 2011, 133, 17225-17231.

24

Qin, Y.; Zhang, Z. K.; Cui, Z. L. Helical carbon nanofibers with a symmetric growth mode. Carbon 2004, 42, 1917-1922.

25

Zhang, G. Y.; Jiang, X; Wang, E. G. Self-assembly of carbon nanohelices: Characteristics and field electron emission properties. Appl. Phys. Lett. 2004, 84, 2646-2648.

26

Jian, X.; Jiang, M.; Zhou, Z. W.; Yang, M. L.; Lu, J.; Hu, S. C.; Wang, Y.; Hui, D. Preparation of high purity helical carbon nanofibers by the catalytic decomposition of acetylene and their growth mechanism. Carbon 2010, 48, 4535-4541.

27

Yamada, T.; Maigne, A.; Yudasaka, M.; Mizuno, K.; Futaba, D. N.; Yumura, M.; Iijima, S.; Hata, K. Revealing the secret of water-assisted carbon nanotube synthesis by microscopic observation of the interaction of water on the catalysts. Nano Lett. 2008, 8, 4288-4292.

28

Yoshihara, N.; Ago, H.; Tsuji, M. Chemistry of water- assisted carbon nanotube growth over Fe-Mo/MgO catalyst. J. Phys. Chem. C 2007, 111, 11577-11582.

29

Wyss, R. M.; Klare, J. E.; Park, H. G.; Noy, A.; Bakajin, O.; Lulevich, V. Water-assisted growth of uniform 100 mm diameter SWCNT arrays. ACS Appl. Mater. Interfaces 2014, 6, 21019-21025.

30

Amama, P. B.; Pint, C. L.; McJilton, L.; Kim, S. M.; Stach, E. A.; Murray, P. T.; Hauge, R. H.; Maruyama, B. Role of water in super growth of single-walled carbon nanotube carpets. Nano Lett. 2009, 9, 44-49.

31

Wen, Y. K.; Shen, Z. M. Synthesis of regular coiled carbon nanotubes by Ni-catalyzed pyrolysis of acetylene and a growth mechanism analysis. Carbon 2001, 39, 2369-2374.

32

Dang, L. F.; Zhang, G.; Kan, K.; Lin, Y. F.; Bai, F. Q.; Jing, L. Q.; Shen, P. K.; Li, L.; Shi, K. Y. Heterostructured Co3O4/ PEI-CNTs composite: Fabrication, characterization and CO gas sensors at room temperature. J. Mater. Chem. A 2014, 2, 4558-4565.

33

Yamashita, T.; Hayes, P. Analysis of XPS spectra of Fe2+ and Fe3+ ions in oxide materials. Appl. Surf. Sci. 2008, 254, 2441-2449.

34

Liu, W.; Lian, J. S.; Jiang, Q. Theoretical study of C2H2 adsorbed on low-index Cu surfaces. J. Phys. Chem. C 2007, 111, 18189-18194.

35

Hanus, M. J.; MacKenzie, K. J.; King, A. A. K.; Dunens, O. M.; Harris, A. T. Parametric study of coiled carbon fibre synthesis on an in situ generated H2S-modified Ni/A12O3 catalyst. Carbon 2011, 49, 4159-4169.

Nano Research
Pages 3327-3339
Cite this article:
Meng F, Wang Y, Wang Q, et al. High-purity helical carbon nanotubes by trace-water-assisted chemical vapor deposition: Large-scale synthesis and growth mechanism. Nano Research, 2018, 11(6): 3327-3339. https://doi.org/10.1007/s12274-017-1897-4
Part of a topical collection:

620

Views

25

Crossref

N/A

Web of Science

27

Scopus

1

CSCD

Altmetrics

Received: 04 September 2017
Revised: 19 October 2017
Accepted: 21 October 2017
Published: 22 May 2018
© Tsinghua University Press and Springer-Verlag GmbH Germany 2017
Return