AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Soft thermal nanoimprint lithography using a nanocomposite mold

Viraj BhingardiveLiran MenahemMark Schvartzman( )
Department of Materials EngineeringIsle Katz Institute of Nanoscale Science and TechnologyBen-Gurion University of the NegevP.O. Box 653Beer-Sheva8410501Israel
Show Author Information

Graphical Abstract

Abstract

Soft nanoimprint lithography has been limited to ultraviolet (UV) curable resists. Here, we introduce a novel approach for soft thermal nanoimprinting. Thisunprecedented combination of the terms "soft" and "thermal" for nanoimprinting became possible thanks to an innovative nanocomposite mold consisting of aflexible polydimethylsiloxane (PDMS) substrate with chemically attached rigidrelief features. We used soft thermal nanoimprinting to produce high-resolution nanopatterns with a sub-100 nm feature size. Furthermore, we demonstrate the applicability of our nanoimprint approach for the nanofabrication of thermallyimprinted nanopatterns on non-planar surfaces such as lenses. Our new nanofabrication strategy paves the way to numerous applications that require the direct fabrication of functional nanostructures on unconventional substrates.

Electronic Supplementary Material

Download File(s)
12274_2017_1900_MOESM1_ESM.pdf (1.4 MB)

References

1

Xia, Y. N.; Whitesides, G. M. Soft lithography. Annu. Rev. Mater. Sci. 1998, 28, 153–184.

2

Qin, D.; Xia, Y. N.; Whitesides, G. M. Soft lithography for micro- and nanoscale patterning. Nat. Protoc. 2010, 5, 491–502.

3

Guo, L. J. Nanoimprint lithography: Methods and material requirements. Adv. Mater. 2007, 19, 495–513.

4

Legrand, D. G.; Gaines, G. L., Jr. The molecular weight dependence of polymer surface tension. J. Colloid Interface Sci. 1969, 31, 162–167.

5

Jung, G. Y.; Li, Z. Y.; Wu, W.; Chen, Y.; Olynick, D. L.; Wang, S. Y.; Tong, W. M.; Williams, R. S. Vapor-phase self-assembled monolayer for improved mold release in nanoimprint lithography. Langmuir 2005, 21, 1158–1161.

6

Moran, I. W.; Briseno, A. L.; Loser, S.; Carter, K. R. Device fabrication by easy soft imprint nano-lithography. Chem. Mater. 2008, 20, 4595–4601.

7

Fan, Z. Y.; Razavi, H.; Do, J. -W.; Moriwaki, A.; Ergen, O.; Chueh, J. L.; Leu, P. W.; Ho, J. C.; Takahashi, T.; Reichertz, L. A. et al. Three-dimensional nanopillar-array photovoltaics on low-cost and flexible substrates. Nat. Mater. 2009, 8, 648–653.

8

Chen, J. W.; Gu, C. L.; Lin, H.; Chen, S. -C. Soft mold-based hot embossing process for precision imprinting of optical components on non-planar surfaces. Opt. Express 2015, 23, 20977–20985.

9

Delamarche, E.; Schmid, H.; Michel, B.; Biebuyck, H. Stability of molded polydimethylsiloxane microstructures. Adv. Mater. 1997, 9, 741–746.

10

Hua, F.; Sun, Y. G.; Gaur, A.; Meitl, M. A.; Bilhaut, L.; Rotkina, L.; Wang, J. F.; Geil, P.; Shim, M.; Rogers, J. A. et al. Polymer imprint lithography with molecular-scale resolution. Nano Lett. 2004, 4, 2467–2471.

11

Schmid, H.; Michel, B. Siloxane polymers for high-resolution, high-accuracy soft lithography. Macromolecules 2000, 33, 3042–3049.

12

Odom, T. W.; Love, J. C.; Wolfe, D. B.; Paul, K. E.; Whitesides, G. M. Improved pattern transfer in soft lithography using composite stamps. Langmuir 2002, 18, 5314–5320.

13

Li, Z. W.; Gu, Y. N.; Wangs, L.; Ge, H. X.; Wu, W.; Xia, Q. F.; Yuan, C. S.; Chen, Y. F.; Cui, B.; Williams, R. S. Hybrid nanoimprint-soft lithography with sub-15 nm resolution. Nano Lett. 2009, 9, 2306–2310.

14

Richeton, J.; Ahzi, S.; Vecchio, K. S. S.; Jiang, F. C.; Adharapurapu, R. R. Influence of temperature and strain rate on the mechanical behavior of three amorphous polymers: Characterization and modeling of the compressive yield stress. Int. J. Solids Struct. 2006, 43, 2318–2335.

15

Wang, Z. X.; Volinsky, A. A.; Gallant, N. D. Crosslinking effect on polydimethylsiloxane elastic modulus measured by custom-built compression instrument. J. Appl. Polymer Sci. 2014, 131, 41050.

16

Chuah, Y. J.; Koh, Y. T.; Lim, K.; Menon, N. V.; Wu, Y. N.; Kang, Y. J. Simple surface engineering of polydimethylsiloxane with polydopamine for stabilized mesenchymal stem cell adhesion and multipotency. Sci. Rep. 2015, 5, 18162.

17

Lee, J. N.; Park, C.; Whitesides, G. M. Solvent compatibility of poly(dimethylsiloxane)-based microfluidic devices. Anal. Chem. 2003, 75, 6544–6554.

18

Menahem, L.; Schvartzman, M. Soft nanoimprint mold with rigid relief features for improved pattern transfer. J. Vac. Sci. Technol. B 2017, 35, 010602.

19

Maex, K.; Baklanov, M. R.; Shamiryan, D.; Lacopi, F.; Brongersma, S. H.; Yanovitskaya, Z. S. Low dielectric constant materials for microelectronics. J. Appl. Phys. 2003, 93, 8793–8841.

20

Yamazaki, K.; Namatsu, H. 5-nm-order electron-beam lithography for nanodevice fabrication. Jpn. J. Appl. Phys. 2004, 43, 3767–3771.

21

Bhattacharya, S.; Datta, A.; Berg, J. M.; Gangopadhyay, S. Studies on surface wettability of poly(dimethyl) siloxane (PDMS) and glass under oxygen-plasma treatment and correlation with bond strength. J. Microelectromech. Syst. 2005, 14, 590–597.

22

McDonald, J. C.; Duffy, D. C.; Anderson, J. R.; Chiu, D. T.; Wu, H. K.; Schueller, O. J. A.; Whitesides, G. M. Fabrication of microfluidic systems in poly(dimethylsiloxane). Electrophoresis 2000, 21, 27–40.

23

Schvartzman, M.; Palma, M.; Sable, J.; Abramson, J.; Hu, X.; Sheetz, M. P.; Wind, S. J. Nanolithographic control of the spatial organization of cellular adhesion receptors at the single-molecule level. Nano Lett. 2011, 11, 1306–1312.

24

Schuster, B. -E.; Haug, A.; Häffner, M.; Blideran, M. M.; Fleischer, M.; Peisert, H.; Kern, D. P.; Chassé, T. Characterization of the morphology and composition of commercial negative resists used for lithographic processes. Anal. Bioanal. Chem. 2009, 393, 1899–1905.

25

Yuan, Q. H. .; Yin, G. Q.; Ning, Z. Y. Effect of oxygen plasma on low dielectric constant HSQ (Hydrogensilsesquioxane) films. Plasma Sci. Technol. 2013, 15, 86–88.

26

Kawamori, M.; Nakamatsu, K.; Haruyama, Y.; Matsui, S. Effect of oxygen plasma irradiation on hydrogen silsesquioxane nanopatterns replicated by room-temperature nanoimprinting. Jpn. J App. Phys. 2006, 45, 8994–8996.

27

Cai, H. G.; Wind, S. J. Improved glass surface passivation for single-molecule nanoarrays. Langmuir 2016, 32, 10034–10041.

28

Yang, K. -Y.; Yoon, K. -M.; Kim, J. -W.; Lee, J. -H.; Lee, H. Low temperature fabrication of residue-free polymer patterns on flexible polymer substrate. Jpn. J. Appl. Phys. 2009, 48, 095003.

29

Liu, M.; Sun, J. R.; Chen, Q. F. Influences of heating temperature on mechanical properties of polydimethylsiloxane. Sens. Actuators A: Phys. 2009, 151, 42–45.

30

Lötters, J. C.; Olthuis, W.; Veltink, P. H.; Bergveld, P. The mechanical properties of the rubber elastic polymer polydimethylsiloxane for sensor applications. J. Micromech. Microeng. 1997, 7, 145–147.

31

Gates, B. D.; Whitesides, G. M. Replication of vertical features smaller than 2 nm by soft lithography. J. Am. Chem. Soc. 2003, 125, 14986–14987.

32

Hillborg, H.; Ankner, J. F.; Gedde, U. W.; Smith, G. D.; Yasuda, H. K.; Wikström, K. Crosslinked polydimethylsiloxane exposed to oxygen plasma studied by neutron reflectometry and other surface specific techniques. Polymer 2000, 41, 6851–6863.

33

Gogolides, E.; Constantoudis, V.; Kokkoris, G.; Kontziampasis, D.; Tsougeni, K.; Boulousis, G.; Vlachopoulou, M.; Tserepi, A. Controlling roughness: From etching to nanotexturing and plasma-directed organization on organic and inorganic materials. J. Phys. D: Appl. Phys. 2011, 44, 174021.

34

Liou, H. -C.; Pretzer, J. Effect of curing temperature on the mechanical properties of hydrogen silsesquioxane thin films. Thin Solid Films 1998, 335, 186–191.

35

Chung, S. W.; Shin, J. H.; Park, N. H.; Park, J. W. Dielectric properties of hydrogen silsesquioxane films degraded by heat and plasma treatment. Jpn. J. Appl. Phys. 1999, 38, 5214–5219.

36

Oh, Y.; Lim, J. W.; Kim, J. G.; Wang, H.; Kang, B. -H.; Park, Y. W.; Kim, H.; Jang, Y. J.; Kim, J.; Kim, D. H. et al. Plasmonic periodic nanodot arrays via laser interference lithography for organic photovoltaic cells with > 10% efficiency. ACS Nano 2016, 10, 10143–10151.

37

Bi, Y. -G.; Feng, J.; Li, Y. -F.; Zhang, X. -L.; Liu, Y. -F.; Jin, Y.; Sun, H. -B. Broadband light extraction from white organic light-emitting devices by employing corrugated metallic electrodes with dual periodicity. Adv. Mater. 2013, 25, 6969–6974.

38

Jin, Y.; Feng, J.; Zhang, X. -L.; Bi, Y. -G.; Bai. Y.; Chen, L.; Lan, T.; Liu, Y. -F.; Chen, Q. -D.; Sun, H. -B. Solving efficiency-stability tradeoff in top-emitting organic light-emitting devices by employing periodically corrugated metallic cathode. Adv. Mater. 2012, 24, 1187–1191.

39

Bi, Y. -G.; Feng, J.; Li, Y. -F.; Zhang, Y. -L.; Liu, Y. -S.; Chen, L.; Liu, Y. -F.; Guo, L.; Wei, S.; Sun, H. -B. Arbitrary shape designable microscale organic light-emitting devices by using femtosecond laser reduced graphene oxide as a patterned electrode. ACS Photonics 2014, 1, 690–695.

40

Fujita, Y.; Aubert, R.; Walke, P.; Yuan, H.; Kenens, B.; Inose, T.; Steuwe, C.; Toyouchi, S.; Fortuni, B.; Chamtouri, M. et al. Highly controllable direct femtosecond laser writing of gold nanostructures on titanium dioxide surfaces. Nanoscale 2017, 9, 13025–13033.

41

Xiong, W.; Zhou, Y. S.; He, X. N.; Gao, Y.; Mahjouri-Samani, M.; Jiang, L.; Baldacchini, T.; Lu, Y. F. Simultaneous additive and subtractive three-dimensional nanofabrication using integrated two-photon polymerization and multiphoton ablation. Light Sci. Appl. 2012, 1, e6.

42

Haynes, C. L.; Van Duyne, R. P. Nanosphere lithography: A versatile nanofabrication tool for studies of size-dependent nanoparticle optics. J. Phys. Chem. B 2001, 105, 5599–5611.

43

Bates, C. M.; Maher, M. J.; Janes, D. W.; Ellison, C. J.; Willson, C. G. Block copolymer lithography. Macromolecules 2014, 47, 2–12.

44

Guo, L. J. Recent progress in nanoimprint technology and its applications. J. Phys. D: Appl. Phys. 2004, 37, R123–R141.

45

Chou, S. Y.; Krauss, P. R.; Renstrom, P. J. Imprint lithography with 25-nanometer resolution. Science 1996, 272, 85–87.

46

Johnston, I. D.; McCluskey, D. K.; Tan, C. K. L.; Tracey, M. C. Mechanical characterization of bulk Sylgard 184 for microfluidics and microengineering. J. Micromech. Microeng. 2014, 24, 035017.

47

Kim, B.; Park, M.; Kim, Y. S.; Jeong, U. Thermal expansion and contraction of an elastomer stamp causes position-dependent polymer patterns in capillary force lithography. ACS Appl. Mater. Interfaces 2011, 3, 4695–4702.

48

Cheyns, D.; Vasseur, K.; Rolin, C.; Genoe, J.; Poortmans, J.; Heremans, P. Nanoimprinted semiconducting polymer films with 50 nm features and their application to organic heterojunction solar cells. Nanotechnology 2008, 19, 424016.

49

Cecchini, M.; Signori, F.; Pingue, P.; Bronco, S.; Ciardelli, F.; Beltram, F. High-resolution poly(ethylene terephthalate) (PET) hot embossing at low temperature: Thermal, mechanical, and optical analysis of nanopatterned films. Langmuir 2008, 24, 12581–12586.

50

Juang, Y. -J.; Lee, L. J.; Koelling, K. W. Hot embossing in microfabrication. Part I: Experimental. Polymer Eng. Sci. 2002, 42, 539–550.

51

Subramani, C.; Ofir, Y.; Patra, D.; Jordan, B. J.; Moran, I. W.; Park, M. -H.; Carter, K. R.; Rotello, V. M. Nanoimprinted polyethyleneimine: A multimodal template for nanoparticle assembly and immobilization. Adv. Funct. Mater. 2009, 19, 2937–2942.

Nano Research
Pages 2705-2714
Cite this article:
Bhingardive V, Menahem L, Schvartzman M. Soft thermal nanoimprint lithography using a nanocomposite mold. Nano Research, 2018, 11(5): 2705-2714. https://doi.org/10.1007/s12274-017-1900-0

642

Views

30

Crossref

N/A

Web of Science

27

Scopus

6

CSCD

Altmetrics

Received: 06 September 2017
Revised: 15 October 2017
Accepted: 25 October 2017
Published: 12 May 2018
© Tsinghua University Press and Springer-Verlag GmbH Germany 2017
Return