AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Essential oils as solvents and core materials for the preparation of photo-responsive polymer nanocapsules

Valentina Marturano1,2Valentina Bizzarro2Adriana De Luise3Anna Calarco3Veronica Ambrogi4( )Marta Giamberini5Bartosz Tylkowski6Pierfrancesco Cerruti2
Department of Chemical SciencesUniversity of Naples "Federico Ⅱ"Via Cynthia 4Napoli80125Italy
Institute for PolymersComposites and Biomaterials (IPCB-CNR)Via Campi Flegrei 34Pozzuoli (NA)80078Italy
Institute of Agro-Environmental and Forest Biology (IBAF-CNR)Via Pietro Castellino 111Napoli80131Italy
Department of ChemicalMaterials and Production Engineering (DICMAPI)University of Naples "Federico Ⅱ"P. le Tecchio 80Napoli80125Italy
Department of Chemical Engineering (DEQ)Universitat Rovira i VirgiliAv. Països Catalans 26Tarragona43007Spain
Chemistry Technology Centre of Catalonia (CTQC)C/Marcel·lí DomingoTarragona43007Spain
Show Author Information

Graphical Abstract

Abstract

Light-triggered release of active ingredients from polymeric nanosized capsules can be employed in a wide range of applications, such as biomedicine, active packaging, and cosmetics. However, the preparation of core-shell polymeric nanocarriers typically involves the use of toxic organic solvents. To improve the sustainability and safety of nanocapsule applications, we demonstrate that natural essential oils can be used both as solvent and active material in light-responsive nanocapsules synthesized via miniemulsion polycondensation. The documented antimicrobial, anti-inflammatory, and antioxidant activity of essential oils enables the design of multipurpose light-responsive delivery platforms. The photo-responsive behavior of the capsules, achieved by means of photochromic azobenzene segments embedded in the capsule shell, is triggered by UV light irradiation (λmax = 360 nm). Light-induced release kinetics of the essential oils and a fluorescent probe molecule, coumarin-6, is evaluated via UV-vis spectroscopy and spectrofluorimetry, respectively, demonstrating the efficiency and reliability of the release mechanism. Biological tests prove that the capsules are non-cytotoxic and readily internalized by cells, indicating the suitability of these smart nanocarriers for biological applications.

References

1

Mura, S.; Nicolas, J.; Couvreur, P. Stimuli-responsive nanocarriers for drug delivery. Nat. Mater. 2013, 12, 991-1003.

2

Wei, H. G.; Wang, Y. R.; Guo, J.; Shen, N. Z.; Jiang, D. W.; Zhang, X.; Yan, X. R.; Zhu, J. H.; Wang, Q.; Shao, L. et al. Advanced micro/nanocapsules for self-healing smart anticorrosion coatings. J. Mater. Chem. A. 2015, 3, 469-480.

3

Hofmeister, I.; Landfester, K.; Taden, A. pH-sensitive nanocapsules with barrier properties: Fragrance encapsulation and controlled release. Macromolecules 2014, 47, 5768-5773.

4

Marturano, V.; Cerruti, P.; Carfagna, C.; Giamberini, M.; Tylkowski, B.; Ambrogi, V. Photo-responsive polymer nanocapsules. Polymer 2015, 70, 222-230.

5

Tylkowski, B.; Pregowska, M.; Jamowska, E.; Garcia-Valls, R.; Giamberini, M. Preparation of a new lightly cross-linked liquid crystalline polyamide by interfacial polymerization. Application to the obtainment of microcapsules with photo-triggered release. Eur. Polymer. J. 2009, 45, 1420-1432.

6

Bogdanowicz, K. A.; Tylkowski, B.; Giamberini, M. Preparation and characterization of light-sensitive microcapsules based on a liquid crystalline polyester. Langmuir 2013, 29, 1601-1608.

7

Jiang, F. J.; Chen, S.; Cao, Z. Q.; Wang, G. J. A photo, temperature, and pH responsive spiropyran-functionalized polymer: Synthesis, self-assembly and controlled release. Polymer 2016, 83, 85-91.

8

Bédard, M.; Skirtach, A. G.; Sukhorukov, G. B. Optically driven encapsulation using novel polymeric hollow shells containing an azobenzene polymer. Macromol. Rapid Commun. 2007, 28, 1517-1521.

9

Goulet-Hanssens, A.; Barrett, C. J. Photo-control of biological systems with azobenzene polymers. J. Polym. Sci. Part A: Polym. Chem. 2013, 51, 3058-3070.

10

Marturano, V.; Cerruti, P.; Giamberini, M.; Tylkowski, B.; Ambrogi, V. Light-responsive polymer micro- and nanocapsules. Polymers 2017, 9, 8.

11

Kimura, E. T.; Ebert, D. M.; Dodge, P. W. Acute toxicity and limits of solvent residue for sixteen organic solvents. Toxicol. Appl. Pharmacol. 1971, 19, 699-704.

12

Burt, S. Essential oils: Their antibacterial properties and potential applications in foods—a review. Int. J. Food Microbiol. 2004, 94, 223-253.

13

Hammer, K. A.; Carson, C. F.; Riley, T. V. Antimicrobial activity of essential oils and other plant extracts. J. Appl. Microbiol. 1999, 86, 985-990.

14

Dorman, H. J. D.; Deans, S. G. Antimicrobial agents from plants: Antibacterial activity of plant volatile oils. J. Appl. Microbiol. 2000, 88, 308-316.

15

Kung, M. L.; Lin, P. Y.; Hsieh, C. W.; Tai, M. H.; Wu, D. C.; Kuo, C. H.; Hsieh, S. L.; Chen, H. T.; Hsieh, S. Bifunctional peppermint oil nanoparticles for antibacterial activity and fluorescence imaging. ACS Sustainable Chem. Eng. 2014, 2, 1769-1775.

16

Licciardello, F.; Muratore, G.; Suma, P.; Russo, A.; Nerín, C. Effectiveness of a novel insect-repellent food packaging incorporating essential oils against the red flour beetle (Tribolium castaneum). Innov. Food Sci. Emerg. Technol. 2013, 19, 173-180.

17

Isman, M. B. Pesticides based on plant essential oils: Phytochemical and practical considerations. In Medicinal and Aromatic Crops: Production, Phytochemistry, and Utilization. Jeliazkov, V. D.; Cantrell, C. L., Eds.; ACS: Washington, DC, 2016; pp 13-26.

18

Langeveld, W. T.; Veldhuizen, E. J. A.; Burt, S. A. Synergy between essential oil components and antibiotics: A review. Crit. Rev. Microbiol. 2014, 40, 76-94.

19

Gómez-Estaca, J.; López-de-Dicastillo, C.; Hernández-Muñoz, P.; Catalá, R.; Gavara, R. Advances in antioxidant active food packaging. Trends Food Sci. Technol. 2014, 35, 42-45.

20

Campos C. A.; Gerschenson L. N.; Flores S. K.; Development of edible films and coatings with antimicrobial activity. Food Bioprocess. Technol. 2011, 4, 849-875.

21

Persico, P.; Ambrogi, V.; Carfagna, C.; Cerruti, P.; Ferrocino, I.; Mauriello, G.; Nanocomposite polymer films containing carvacrol for antimicrobial active packaging. Polym. Eng. Sci. 2009, 49, 1447-1455.

22

Gomes, C.; Moreira, R. G.; Castell-Perez, E. Poly(DL-lactide-co-glycolide) (PLGA) nanoparticles with entrapped trans-cinnamaldehyde and eugenol for antimicrobial delivery applications. J. Food Sci. 2011, 76, N16-N24.

23

Pan, K.; Chen, H. Q.; Davidson, P. M.; Zhong, Q. X. Thymol nanoencapsulated by sodium caseinate: Physical and antilisterial properties. J. Agric. Food Chem. 2014, 62, 1649-1657.

24

Chen, N. S.; Dempere, L. A.; Tong, Z. H. Synthesis of pH-responsive lignin-based nanocapsules for controlled release of hydrophobic molecules. ACS Sustain. Chem. Eng. 2016, 4, 5204-5211.

25

Fleige, E.; Quadir, M. A.; Haag, R. Stimuli-responsive polymeric nanocarriers for the controlled transport of active compounds: Concepts and applications. Adv. Drug Deliv. Rev. 2012, 64, 866-884.

26

Bakkali, F.; Averbeck, S.; Averbeck, D.; Idaomar, M. Biological effects of essential oils-A review. Food Chem. Toxic. 2008, 46, 446-475.

27

Conte, R.; Marturano, V.; Peluso, G.; Calarco, A.; Cerruti, P. Recent advances in nanoparticle-mediated delivery of anti-inflammatory phytocompounds. Int. J. Mol. Sci. 2017, 18, 709.

28

Torini, L.; Argillier, J. F.; Zydowicz, N. Interfacial polycondensation encapsulation in miniemulsion. Macromolecules 2005, 38, 3225-3236.

29

Calarco, A.; Bosetti, M.; Margarucci, S.; Fusaro, L.; Nicolì, E.; Petillo, O.; Cannas, M.; Galderisi, U.; Peluso, G. The genotoxicity of PEI-based nanoparticles is reduced by acetylation of polyethylenimine amines in human primary cells. Toxicol. Lett. 2013, 218, 10-17.

30

Kalemba, D.; Kunicka, A. Antibacterial and antifungal properties of essential oils. Curr. Med. Chem. 2003, 10, 813-829.

31

Paster, N.; Juven, B. J.; Shaaya, E.; Menasherov, M.; Nitzan, R.; Weisslowicz, H.; Ravid, U. Inhibitory effect of oregano and thyme essential oils on moulds and foodborne bacteria. Lett. Appl. Microbiol. 1990, 11, 33-37.

32

Wilson, C. L.; Solar, J. M.; El Ghaouth, A.; Wisniewski, M. E. Rapid evaluation of plant extracts and essential oils for antifungal activity against Botrytis Cinerea. Plant Dis. 1997, 81, 204-210.

33

Herrmann, A.; Debonneville, C.; Laubscher, V.; Aymard, L. Dynamic headspace analysis of the light-induced controlled release of perfumery aldehydes and ketones from α-keto esters in bodycare and household applications. Flavour Fragr. J. 2000, 15, 415-420.

34

Lee, S. J.; Umano, K.; Shibamoto, T.; Lee, K. G. Identification of volatile components in basil (Ocimum basilicum L. ) and thyme leaves (Thymus vulgaris L. ) and their antioxidant properties. Food Chem. 2005, 91, 131-137.

35

Mora-Huertas, C. E.; Fessi, H.; Elaissari, A. Polymer-based nanocapsules for drug delivery. Int. J. Pharm. 2010, 385, 113-142.

36

Dispinar, T.; Colard, C. A. L.; Du Prez, F. E.; Polyurea microcapsules with a photocleavable shell: UV-triggered release. Polym. Chem. 2013, 4, 763-772.

37

Ziegler, H. Flavourings: Production, Composition, Applications, Regulations; 2nd ed. John Wiley & Sons: Hoboken, New Jersey, 2007.

38

Lin, H.; Xiao, W.; Qin, S. Y.; Cheng, S. X.; Zhang, X. Z. Switch on/off microcapsules for controllable photosensitive drug release in a 'release-cease-recommence' mode. Polym. Chem. 2014, 5, 4437-4440.

39

Peteu, S. F.; Oancea, F.; Sicuia, O. A.; Constantinescu, F.; Dinu, S. Responsive polymers for crop protection. Polymers 2010, 2, 229-251.

40

Son, K. J.; Yoon, H. J.; Kim, J. H.; Jang, W. D.; Lee, Y.; Koh, W. G. Photosensitizing hollow nanocapsules for combination cancer therapy. Angew. Chem., Int. Ed. 2011, 50, 11968-11971.

41

Mastromatteo, M.; Mastromatteo, M.; Conte, A.; Del Nobile, M. A. Advances in controlled release devices for food packaging applications. Trends Food Sci. Technol. 2010, 21, 591-598.

42

Hanno, I.; Anselmi, C.; Bouchemal, K. Polyamide nanocapsules and nano-emulsions containing Parsol® MCX and Parsol® 1789: In vitro release, ex vivo skin penetration and photo-stability studies. Pharm. Res. 2012, 29, 559-573.

Nano Research
Pages 2783-2795
Cite this article:
Marturano V, Bizzarro V, Luise AD, et al. Essential oils as solvents and core materials for the preparation of photo-responsive polymer nanocapsules. Nano Research, 2018, 11(5): 2783-2795. https://doi.org/10.1007/s12274-017-1908-5

706

Views

31

Crossref

N/A

Web of Science

32

Scopus

0

CSCD

Altmetrics

Received: 23 July 2017
Revised: 27 October 2017
Accepted: 03 November 2017
Published: 12 May 2018
© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2017
Return