AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Porous hollow palladium nanoplatform for imaging-guided trimodal chemo-, photothermal-, and radiotherapy

Menglin Song1Nian Liu1Le He3Gang Liu1Daishun Ling4Xinhui Su5Xiaolian Sun1,2( )
State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational MedicineSchool of Public HealthXiamen UniversityXiamen361005China
Department of Pharmaceutical AnalysisChina Pharmaceutical UniversityNanjing210009China
Institute of Functional Nano & Soft Materials (FUNSOM)Jiangsu Key Laboratory for Carbon-Based Functional Materials & DevicesSoochow UniversitySuzhou215123China
Zhejiang Province Key Laboratory of Anti-Cancer Drug ResearchCollege of Pharmaceutical SciencesZhejiang UniversityHangzhou310058China
Department of Nuclear MedicineZhongshan Hospital Xiamen UniversityXiamen361004China
Show Author Information

Graphical Abstract

Abstract

Cancer is one of the major causes of human death. There are many types of cancer treatment including surgery, chemotherapy, radiotherapy, and photothermal therapy. Combining different therapies can synergistically enhance the therapeutic effect. We developed porous hollow palladium nanoparticles (PHPdNPs) to co-deliver 131I (a radioisotope that is commonly used in radiotherapy) and doxorubicin (DOX; a chemotherapy drug). Compared with other mesoporous nanocarriers, our PHPdNPs exhibited impressive photothermal conversion efficiency and stability. Drug loading is high and drug release is controllable by repeated laser irradiation and acidic pH in tumor microenvironments. Owing to the specific interaction between palladium and iodine, the PHPdNPs serve as effective 131I delivery vehicles with excellent radiochemical stability. A single dose of [131I]PHPdNPs-DOX has superior antitumor efficacy because it enables a combination of chemo-, photothermal-, and radio-therapy. Moreover, the nanocomplex has no obvious side-effects in mice. Therefore, we believe that PHPdNPs are excellent candidates for multimodal imaging-guided therapy.

Electronic Supplementary Material

Download File(s)
12274_2017_1910_MOESM1_ESM.pdf (1.8 MB)

References

1

Stewart, B. W.; Kleihues, P. World Cancer Report 2003; World Health Organization Press: Geneva, 2003.

2

Florea, A. M.; Büsselberg, D. Cisplatin as an anti-tumor drug: Cellular mechanisms of activity, drug resistance and induced side effects. Cancers 2011, 3, 1351-1371.

3

Tsuruo, T.; Naito, M.; Tomida, A.; Fujita, N.; Mashima, T.; Sakamoto, H.; Haga, N. Molecular targeting therapy of cancer: Drug resistance, apoptosis and survival signal. Cancer Sci. 2003, 94, 15-21.

4

Peer, D.; Karp, J. M.; Hong, S.; Farokhzad, O. C.; Margalit, R.; Langer, R. Nanocarriers as an emerging platform for cancer therapy. Nat. Nanotechnol. 2007, 2, 751-760.

5

Guo, R.; Zhang, L. Y.; Qian, H. Q.; Li, R. T.; Jiang, X. Q.; Liu, B. R. Multifunctional nanocarriers for cell imaging, drug delivery, and near-IR photothermal therapy. Langmuir 2010, 26, 5428-5434.

6

Li, L.; ten Hagen, T. L. M.; Bolkestein, M.; Gasselhuber, A.; Yatvin, J.; van Rhoon, G. C.; Eggermont, A. M. M.; Haemmerich, D.; Koning, G. A. Improved intratumoral nanoparticle extravasation and penetration by mild hyperthermia. J. Control. Release 2013, 167, 130-137.

7

Corsini, M. M.; Miller, R. C.; Haddock, M. G.; Donohue, J. H.; Farnell, M. B.; Nagorney, D. M.; Jatoi, A.; McWilliams, R. R.; Kim, G. P.; Bhatia, S. et al. Adjuvant radiotherapy and chemotherapy for pancreatic carcinoma: The Mayo Clinic experience (1975-2005). J. Clin. Oncol. 2008, 26, 3511-3516.

8

Bartelink, H.; Roelofsen, F.; Eschwege, F.; Rougier, P.; Bosset, J. F.; Gonzalez, D. G.; Peiffert, D.; van Glabbeke, M.; Pierart, M. Concomitant radiotherapy and chemotherapy is superior to radiotherapy alone in the treatment of locally advanced anal cancer: Results of a phase Ⅲ randomized trial of the European Organization for Research and Treatment of Cancer Radiotherapy and Gastrointestinal Cooperative Groups. J. Clin. Oncol. 1997, 15, 2040-2049.

9

Zhang, W.; Guo, Z. Y.; Huang, D. Q.; Liu, Z. M.; Guo, X.; Zhong, H. Q. Synergistic effect of chemo-photothermal therapy using PEGylated graphene oxide. Biomaterials 2011, 32, 8555-8561.

10

Chen, L.; Zhong, X. Y.; Yi, X.; Huang, M.; Ning, P.; Liu, T.; Ge, C. C.; Chai, Z. F.; Liu, Z.; Yang, K. Radionuclide 131I labeled reduced graphene oxide for nuclear imaging guided combined radio- and photothermal therapy of cancer. Biomaterials 2015, 66, 21-28.

11

Guo, L. R.; Yan, D. D.; Yang, D. F.; Li, Y. J.; Wang, X. D.; Zalewski, O.; Yan, B. F.; Lu, W. Combinatorial photothermal and immuno cancer therapy using chitosan-coated hollow copper sulfide nanoparticles. ACS Nano 2014, 8, 5670-5681.

12

Meng, Z. Q.; Wei, F.; Ma, W. J.; Yu, N.; Wei, P. L.; Wang, Z. J.; Tang, Y. Q.; Chen, Z. G.; Wang, H. P.; Zhu, M. F. Design and Synthesis of ※all-in-one§ multifunctional FeS2 nanoparticles for magnetic resonance and near-infrared imaging guided photothermal therapy of tumors. Adv. Funct. Mater. 2016, 26, 8231-8242.

13

Song, G. S.; Chao, Y.; Chen, Y. Y.; Liang, C.; Yi, X.; Yang, G. B.; Yang, K.; Cheng, L.; Zhang, Q.; Liu, Z. All-in-one theranostic nanoplatform based on hollow TaOx for chelator-free labeling imaging, drug delivery, and synergistically enhanced radiotherapy. Adv. Funct. Mater. 2016, 26, 8243-8254.

14

Liu, T.; Shi, S. X.; Liang, C.; Shen, S. D.; Cheng, L.; Wang, C.; Song, X. J.; Goel, S.; Barnhart, T. E.; Cai, W. B. et al. Iron oxide decorated MoS2 nanosheets with double PEGylation for chelator-free radiolabeling and multimodal imaging guided photothermal therapy. ACS Nano 2015, 9, 950-960.

15

Huang, X. H.; El-Sayed, M. A. Gold nanoparticles: Optical properties and implementations in cancer diagnosis and photothermal therapy. J. Adv. Res. 2010, 1, 13-28.

16

Wang, S. H.; Riedinger, A.; Li, H. B.; Fu, C. H.; Liu, H. Y.; Li, L. L.; Liu, T. L.; Tan, L. F.; Barthel, M. J.; Pugliese, G. et al. Plasmonic copper sulfide nanocrystals exhibiting near-infrared photothermal and photodynamic therapeutic effects. ACS Nano 2015, 9, 1788-1800.

17

Yang, K.; Zhang, S.; Zhang, G.; Sun, X. M.; Lee, S. T.; Liu, Z. Graphene in mice: Ultrahigh in vivo tumor uptake and efficient photothermal therapy. Nano Lett. 2010, 10, 3318-3323.

18

Yi, X.; Yang, K.; Liang, C.; Zhong, X. Y.; Ning, P.; Song, G. S.; Wang, D. L.; Ge, C. C.; Chen, C. Y.; Chai, Z. F. et al. Imaging-guided combined photothermal and radiotherapy to treat subcutaneous and metastatic tumors using iodine-131-doped copper sulfide nanoparticles. Adv. Funct. Mater. 2015, 25, 4689-4699.

19

Zhou, M.; Zhao, J.; Tian, M.; Song, S.; Zhang, R.; Gupta, S.; Tan, D.; Shen, H.; Ferrari, M.; Li, C. Radio-photothermal therapy mediated by a single compartment nanoplatform depletes tumor initiating cells and reduces lung metastasis in the orthotopic 4T1 breast tumor model. Nanoscale 2015, 7, 19438-19447.

20

You, J.; Zhang, R.; Zhang, G. D.; Zhong, M.; Liu, Y.; Van Pelt, C. S.; Liang, D.; Wei, W.; Sood, A. K.; Li, C. Photothermal-chemotherapy with doxorubicin-loaded hollow gold nanospheres: A platform for near-infrared light-trigged drug release. J. Control. Release 2012, 158, 319-328.

21

Wang, X. Y.; Zhang, J. S.; Wang, Y. T.; Wang, C. P.; Xiao, J. R.; Zhang, Q.; Cheng, Y. Y. Multi-responsive photothermal-chemotherapy with drug-loaded melanin-like nanoparticles for synergetic tumor ablation. Biomaterials 2016, 81, 114-124.

22

Yang, G. B.; Gong, H.; Liu, T.; Sun, X. Q.; Cheng, L.; Liu, Z. Two-dimensional magnetic WS2@Fe3O4 nanocomposite with mesoporous silica coating for drug delivery and imaging-guided therapy of cancer. Biomaterials 2015, 60, 62-71.

23

Liu, J. J.; Wang, C.; Wang, X. J.; Wang, X.; Cheng, L.; Li, Y. G.; Liu, Z. Mesoporous silica coated single-walled carbon nanotubes as a multifunctional light-responsive platform for cancer combination therapy. Adv. Funct. Mater. 2015, 25, 384-392.

24

Yavuz, M. S.; Cheng, Y. Y.; Chen, J. Y.; Cobley, C. M.; Zhang, Q.; Rycenga, M.; Xie, J. W.; Kim, C.; Song, K. H.; Schwartz, A. G. et al. Gold nanocages covered by smart polymers for controlled release with near-infrared light. Nat. Mater. 2009, 8, 935-939.

25

Sashikata, K.; Matsui, Y.; Itaya, K.; Soria, M. P. Adsorbed-iodine-catalyzed dissolution of Pd single-crystal electrodes: Studies by electrochemical scanning tunneling microscopy. J. Phys. Chem. 1996, 100, 20027-20034.

26

Rodriguez, J. F.; Mebrahtu, T.; Soriaga, M. P. The interaction of I2(g), HI(g) and KI(aq) with Pd (111) electrode surfaces. J. Electroanal. Chem. 1989, 264, 291-296.

27

Guo, S. J.; Dong, S. J.; Wang, E. K. A general method for the rapid synthesis of hollow metallic or bimetallic nanoelectrocatalysts with urchinlike morphology. Chem. -Eur. J. 2008, 14, 4689-4695.

28

Song, X. R.; Wang, X. Y.; Yu, S. X.; Cao, J. B.; Li, S. H.; Li, J.; Liu, G.; Yang, H. H.; Chen, X. Y. Co9Se8 nanoplates as a new theranostic platform for photoacoustic/magnetic resonance dual-modal-imaging-guided chemo-photothermal combination therapy. Adv. Mater. 2015, 27, 3285-3291.

29

Roper, D. K.; Ahn, W.; Hoepfner, M. Microscale heat transfer transduced by surface plasmon resonant gold nanoparticles. J. Phys. Chem. C 2007, 111, 3636-3641.

30

Sutter, E.; Jungjohann, K.; Bliznakov, S.; Courty, A.; Maisonhaute, E.; Tenney, S.; Sutter, P. In situ liquid-cell electron microscopy of silver-palladium galvanic replacement reactions on silver nanoparticles. Nat. Commun. 2014, 5, 4946.

31

Jang, H. J.; Min, D. H. Spherically-clustered porous Au-Ag alloy nanoparticle prepared by partial inhibition of galvanic replacement and its application for efficient multimodal therapy. ACS Nano 2015, 9, 2696-2703.

32

Prevo, B. G.; Esakoff, S. A.; Mikhailovsky, A.; Zasadzinski, J. A. scalable routes to gold nanoshells with tunable sizes and response to near-infrared pulsed-laser irradiation. Small 2008, 4, 1183-1195.

33

You, J.; Zhang, G. D.; Li, C. Exceptionally high payload of doxorubicin in hollow gold nanospheres for near-infrared light-triggered drug release. ACS Nano 2010, 4, 1033-1041.

34

Rapoport, N. Physical stimuli-responsive polymeric micelles for anti-cancer drug delivery. Prog. Polym. Sci. 2007, 32, 962-990.

35

Nair, C. K. K.; Parida, D. K.; Nomura, T. Radioprotectors in radiotherapy. J. Radiat. Res. 2001, 42, 21-37.

36

Schlumberger, M.; De Vathaire, F.; Ceccarelli, C.; Delisle, M. J.; Francese, C.; Couette, J. E.; Pinchera, A.; Parmentier, C. Exposure to radioactive iodine-131 for scintigraphy or therapy does not preclude pregnancy in thyroid cancer patients. J. Nucl. Med. 1996, 37, 606-612.

37

Yang, K.; Wan, J. M.; Zhang, S.; Zhang, Y. J.; Lee, S. T.; Liu, Z. In vivo pharmacokinetics, long-term biodistribution, and toxicology of PEGylated graphene in mice. ACS Nano 2011, 5, 516-522.

38

Schaffland, A. O.; Buchegger, F.; Kosinski, M.; Antonescu, C.; Paschoud, C.; Grannavel, C.; Pellikka, R.; Delaloye, A. B. 131I-rituximab: Relationship between immunoreactivity and specific activity. J. Nucl. Med. 2004, 45, 1784-1790.

39

Tian, L. L.; Chen, Q.; Yi, X.; Wang, G. L.; Chen, J.; Ning, P.; Yang, K.; Liu, Z. Radionuclide I-131 labeled albumin-paclitaxel nanoparticles for synergistic combined chemo-radioisotope therapy of cancer. Theranostics 2017, 7, 614-623.

Nano Research
Pages 2796-2808
Cite this article:
Song M, Liu N, He L, et al. Porous hollow palladium nanoplatform for imaging-guided trimodal chemo-, photothermal-, and radiotherapy. Nano Research, 2018, 11(5): 2796-2808. https://doi.org/10.1007/s12274-017-1910-y

919

Views

44

Crossref

N/A

Web of Science

49

Scopus

2

CSCD

Altmetrics

Received: 10 September 2017
Revised: 03 November 2017
Accepted: 04 November 2017
Published: 12 May 2018
© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2017
Return