Graphical Abstract

Because of its high compatibility with conventional microfabrication processing technology, epitaxial graphene (EG) grown on SiC shows exceptional promise for graphene-based electronics. However, to date, a detailed understanding of the transformation from three-layer SiC to monolayer graphene is still lacking. Here, we demonstrate the direct atomic-scale observation of EG growth on a SiC (1
Novoselov, K. S.; Geim, A. K.; Morozov, S. V.; Jiang, D.; Zhang, Y.; Dubonos, S. V.; Grigorieva, I. V.; Firsov, A. A. Electric field effect in atomically thin carbon films. Science 2004, 306, 666-669.
Novoselov, K. S.; Fal'ko, V. I.; Colombo, L.; Gellert, P. R.; Schwab, M. G.; Kim, K. A roadmap for graphene. Nature 2012, 490, 192-200.
Raccichini, R.; Varzi, A.; Passerini, S.; Scrosati, B. The role of graphene for electrochemical energy storage. Nat. Mater. 2015, 14, 271-279.
Berger, C.; Song, Z. M.; Li, T. B.; Li, X. B.; Ogbazghi, A. Y.; Feng, R.; Dai, Z. T.; Marchenkov, A. N.; Conrad, E. H.; First, P. N. et al. Ultrathin epitaxial graphite: 2D electron gas properties and a route toward graphene-based nanoelectronics. J. Phys. Chem. B 2004, 108, 19912-19916.
Lin, Y. -M.; Valdes-Garcia, A.; Han, S. -J.; Farmer, D. B.; Meric, I.; Sun, Y. N.; Wu, Y. Q.; Dimitrakopoulos, C.; Grill, A.; Avouris, P. et al. Wafer-scale graphene integrated circuit. Science 2011, 332, 1294-1297.
Huang, H.; Chen, W.; Chen, S.; Wee, A. T. S. Bottom-up growth of epitaxial graphene on 6H-SiC(0001). ACS Nano 2008, 2, 2513-2518.
Tanaka, S.; Morita, K.; Hibino, H. Anisotropic layer-by-layer growth of graphene on vicinal SiC(0001) surfaces. Phys. Rev. B 2010, 81, 041406.
Norimatsu, W.; Kusunoki, M. Transitional structures of the interface between graphene and 6H-SiC (0001). Chem. Phys. Lett. 2009, 468, 52-56.
Emtsev, K. V.; Bostwick, A.; Horn, K.; Jobst, J.; Kellogg, G. L.; Ley, L.; McChesney, J. L.; Ohta, T.; Reshanov, S. A.; Rohrl, J. et al. Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nat. Mater. 2009, 8, 203-207.
Johansson, L. I.; Watcharinyanon, S.; Zakharov, A. A.; Iakimov, T.; Yakimova, R.; Virojanadara, C. Stacking of adjacent graphene layers grown on C-face SiC. Phys. Rev. B 2011, 84, 125405.
Varchon, F.; Mallet, P.; Magaud, L.; Veuillen, J. -Y. Rotational disorder in few-layer graphene films on 6H-SiC(000
Weng, X. J.; Robinson, J. A.; Trumbull, K.; Cavalero, R.; Fanton, M. A.; Snyder, D. Epitaxial graphene on SiC(000
Borysiuk, J.; Sołtys, J.; Piechota, J. Stacking sequence dependence of graphene layers on SiC (000
de Heer, W. A.; Berger, C.; Ruan, M.; Sprinkle, M.; Li, X.; Hu, Y.; Zhang, B.; Hankinson, J.; Conrad, E. Large area and structured epitaxial graphene produced by confinement controlled sublimation of silicon carbide. Proc. Natl. Acad. Sci. USA 2011, 108, 16900-16905.
Tromp, R. M.; Hannon, J. B. Thermodynamics and kinetics of graphene growth on SiC(0001). Phys. Rev. Lett. 2009, 102, 106104.
Forbeaux, I.; Themlin, J. M.; Debever, J. M. Heteroepitaxial graphite on 6H-SiC(0001): Interface formation through conduction-band electronic structure. Phys. Rev. B 1998, 58, 16396-16406.
Hass, J.; Feng, R.; Li, T.; Li, X.; Zong, Z.; de Heer, W. A.; First, P. N.; Conrad, E. H.; Jeffrey, C. A.; Berger, C. Highly ordered graphene for two dimensional electronics. Appl. Phys. Lett. 2006, 89, 143106.
Kumar, B.; Baraket, M.; Paillet, M.; Huntzinger, J. R.; Tiberj, A.; Jansen, A. G. M.; Vila, L.; Cubuku, M.; Vergnaud, C.; Jamet, M. et al. Growth protocols and characterization of epitaxial graphene on SiC elaborated in a graphite enclosure. Phys. E: Low-dimens. Syst. Nanostr. 2016, 75, 7-14.
Robinson, J. A.; Wetherington, M.; Tedesco, J. L.; Campbell, P. M.; Weng, X.; Stitt, J.; Fanton, M. A.; Frantz, E.; Snyder, D.; VanMil, B. L. et al. Correlating Raman spectral signatures with carrier mobility in epitaxial graphene: A guide to achieving high mobility on the wafer scale. Nano Lett. 2009, 9, 2873-2876.
Lin, Y. -M.; Dimitrakopoulos, C.; Jenkins, K. A.; Farmer, D. B.; Chiu, H. -Y.; Grill, A.; Avouris, P. 100-GHz transistors from wafer-scale epitaxial graphene. Science 2010, 327, 662.
Luxmi; Srivastava, N.; He, G. W.; Feenstra, R. M.; Fisher, P. J. Comparison of graphene formation on C-face and Si-face SiC {0001} surfaces. Phys. Rev. B 2010, 82, 235406.
Hass, J.; Varchon, F.; Millán-Otoya, J. E.; Sprinkle, M.; Sharma, N.; de Heer, W. A.; Berger, C.; First, P. N.; Magaud, L.; Conrad, E. H. Why multilayer graphene on 4H-SiC(000
Hicks, J.; Shepperd, K.; Wang, F.; Conrad, E. H. The structure of graphene grown on the SiC (000
Kageshima, H.; Hibino, H.; Tanabe, S. The physics of epitaxial graphene on SiC(0001). J. Phys. : Condens. Matter 2012, 24, 314215.
Bolen, M. L.; Harrison, S. E.; Biedermann, L. B.; Capano, M. A. Graphene formation mechanisms on 4H-SiC(0001). Phys. Rev. B 2009, 80, 115433.
Norimatsu, W.; Kusunoki, M. Formation process of graphene on SiC (0001). Phys. E: Low-dimens. Syst. Nanostr. 2010, 42, 691-694.
Robinson, J.; Weng, X. J.; Trumbull, K.; Cavalero, R.; Wetherington, M.; Frantz, E.; LaBella, M.; Hughes, Z.; Fanton, M.; Snyder, D. Nucleation of epitaxial graphene on SiC(0001). ACS Nano 2009, 4, 153-158.
Hupalo, M.; Conrad, E. H.; Tringides, M. C. Growth mechanism for epitaxial graphene on vicinal 6H-SiC(0001) surfaces: A scanning tunneling microscopy study. Phys. Rev. B 2009, 80, 041401.
Norimatsu, W.; Takada, J.; Kusunoki, M. Formation mechanism of graphene layers on SiC (000
Camara, N.; Rius, G.; Huntzinger, J. -R.; Tiberj, A.; Magaud, L.; Mestres, N.; Godignon, P.; Camassel, J. Early stage formation of graphene on the C face of 6H-SiC. Appl. Phys. Lett. 2008, 93, 263102.
Hite, J. K.; Twigg, M. E.; Tedesco, J. L.; Friedman, A. L.; Myers-Ward, R. L.; Eddy, C. R., Jr; Gaskill, D. K. Epitaxial graphene nucleation on C-face silicon carbide. Nano Lett. 2011, 11, 1190-1194.
Hwang, Y. B.; Lee, E. -K.; Choi, H.; Yun, K. -H.; Lee, M.; Chung, Y. -C. Atomic behavior of carbon atoms on a Si removed 3C-SiC (111) surface during the early stage of epitaxial graphene growth. J. Appl. Phys. 2012, 111, 104324.
Ryosuke, I.; Takahiro, K.; Yasuyuki, S.; Masato, I.; Yoshihiro, K.; Koichi, K. Molecular dynamics simulation of graphene growth by surface decomposition of 6H-SiC(0001) and (000
Tang, C.; Meng, L. J.; Xiao, H. P.; Zhong, J. X. Growth of graphene structure on 6H-SiC(0001): Molecular dynamics simulation. J. Appl. Phys. 2008, 103, 063505.
Daas, B. K.; Omar, S. U.; Shetu, S.; Daniels, K. M.; Ma, S. Sudarshan, T. S.; Chandrashekhar, M. V. S.; Comparison of epitaxial graphene growth on polar and nonpolar 6H-SiC faces: On the growth of multilayer films. Cryst. Growth Des. 2012, 12, 3379-3387.
Low, T.; Perebeinos, V.; Tersoff, J.; Avouris, P. Deformation and scattering in graphene over substrate steps. Phys. Rev. Lett. 2012, 108, 096601.
Ostler, M.; Deretzis, I.; Mammadov, S.; Giannazzo, F.; Nicotra, G.; Spinella, C.; Seyller, T.; La Magna, A. Direct growth of quasi-free-standing epitaxial graphene on nonpolar SiC surfaces. Phys. Rev. B 2013, 88, 085408.
Lin, J. J.; Guo, L. W.; Jia, Y. P.; Yang, R.; Wu, S.; Huang, J.; Guo, Y.; Li, Z. L.; Zhang, G. Y.; Chen, X. L. Identification of dominant scattering mechanism in epitaxial graphene on SiC. Appl. Phys. Lett. 2014, 104, 183102.
Deng, D. H.; Pan, X. L.; Zhang, H.; Fu, Q.; Tan, D. L.; Bao, X. Freestanding graphene by thermal splitting of silicon carbide granules. Adv. Mater. 2010, 22, 2168-2171.
Muehlhoff, L.; Choyke, W. J.; Bozack, M. J.; Yates, J. T. Comparative electron spectroscopic studies of surface segregation on SiC(0001) and SiC(000
Haiss, W. Surface stress of clean and adsorbate-covered solids. Rep. Prog. Phys. 2001, 64, 591-648.
Rauls, E.; Hajnal, Z.; Deák, P.; Frauenheim, T. Theoretical study of the nonpolar surfaces and their oxygen passivation in 4H- and 6H-SiC. Phys. Rev. B 2001, 64, 245323.
Seyller, T.; Graupner, R.; Sieber, N.; Emtsev, K. V.; Ley, L.; Tadich, A.; Riley, J. D.; Leckey, R. C. G. Hydrogen terminated 4H-SiC (1
Ming, F.; Zangwill, A. Model for the epitaxial growth of graphene on 6H-SiC(0001). Phys. Rev. B 2011, 84, 115459.
Florian, B. Irradiation effects in carbon nanostructures. Rep. Prog. Phys. 1999, 62, 1181-1221.
Kusunoki, M.; Suzuki, T.; Hirayama, T.; Shibata, N.; Kaneko, K. A formation mechanism of carbon nanotube films on SiC(0001). Appl. Phys. Lett. 2000, 77, 531-533.
Pauling, L. The Nature of the Chemical Bond; Cornell University Press: Ithaca, NY, 1960.
Bernstein, H. J. Bond energies in hydrocarbons. Trans. Faraday Soc. 1962, 58, 2285-2306.
Walsh, R. Bond dissociation energies in organosilicon compounds. In: Silicon in Organic, Organometallic and Polymer Chemistry. M. A. Brook, Ed.; Wiley: New York, 1998.
Mélinon, P.; Masenelli, B.; Tournus, F.; Perez, A. Playing with carbon and silicon at the nanoscale. Nat. Mater. 2007, 6, 479-490.
Gao, J. F.; Yip, J.; Zhao, J. J.; Yakobson, B. I.; Ding, F. Graphene nucleation on transition metal surface: Structure transformation and role of the metal step edge. J. Am. Chem. Soc. 2011, 133, 5009-5015.
Li, J. D.; Croiset, E.; Ricardez-Sandoval, L. Carbon clusters on the Ni (111) surface: A density functional theory study. Phys. Chem. Chem. Phys. 2014, 16, 2954-2961.
Yuan, Q. H.; Ding, F. Formation of carbyne and graphyne on transition metal surfaces. Nanoscale 2014, 6, 12727-12731.
Zhang, L. Y.; Zhao, X. J.; Xue, X. L.; Shi, J. L.; Li, C.; Ren, X. Y.; Niu, C. Y.; Jia, Y.; Guo, Z. X.; Li, S. F. Sub-surface alloying largely influences graphene nucleation and growth over transition metal substrates. Phys. Chem. Chem. Phys. 2015, 17, 30270-30278.
Van Wesep, R. G.; Chen, H.; Zhu, W. G.; Zhang, Z. Y. Communication: Stable carbon nanoarches in the initial stages of epitaxial growth of graphene on Cu(111). J. Chem. Phys. 2011, 134, 171105.
Zhuang, J. N.; Zhao, R. Q.; Dong, J. C.; Yan, T. Y.; Ding, F. Evolution of domains and grain boundaries in graphene: A kinetic Monte Carlo simulation. Phys. Chem. Chem. Phys. 2016, 18, 2932-2939.
Ding, F.; Yakobson, B. I. Energy-driven kinetic Monte Carlo method and its application in fullerene coalescence. J. Phys. Chem. Lett. 2014, 5, 2922-2926.
Kresse, G.; Furthmüller, J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comp. Mater. Sci. 1996, 6, 15-50.
Perdew, J. P.; Zunger, A. Self-interaction correction to density-functional approximations for many-electron systems. Phys. Rev. B 1981, 23, 5048-5079.
Blöchl, P. E. Projector augmented-wave method. Phys. Rev. B 1994, 50, 17953-17979.
Nosé, S. A unified formulation of the constant temperature molecular dynamics methods. J. Chem. Phys. 1984, 81, 511-519.
Donald, W. B.; Olga, A. S.; Judith, A. H.; Steven, J. S.; Boris, N.; Susan, B. S. A second-generation reactive empirical bond order (REBO) potential energy expression for hydrocarbons. J. Phys. : Condens. Matter 2002, 14, 783-802.