AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Highly efficient catalytic scavenging of oxygen free radicals with graphene-encapsulated metal nanoshields

Junying Wang1,§Xiaoju Cui2,3,4,§Haobo Li2,4,§Jianping Xiao2Jiang Yang6Xiaoyu Mu1Haixia Liu1Yuan-Ming Sun5Xuhui Xue5Changlong Liu1Xiao-Dong Zhang1( )Dehui Deng2,3( )Xinhe Bao2
Department of PhysicsTianjin Key Laboratory of Low Dimensional Materials Physics and Preparing TechnologySchool of ScienceTianjin UniversityTianjin300350China
State Key Laboratory of CatalysisCollaborative Innovation Center of Chemistry for Energy MaterialsDalian Institute of Chemical PhysicsChinese Academy of SciencesDalian116023China
State Key Laboratory for Physical Chemistry of Solid SurfacesCollaborative Innovation Center of Chemistry for Energy MaterialsCollege of Chemistry and Chemical EngineeringXiamen UniversityXiamen361005China
University of Chinese Academy of SciencesBeijing100039China
Tianjin Key Laboratory of Molecular Nuclear MedicineInstitute of Radiation MedicineChinese Academy of Medical Sciences and Peking Union Medical CollegeTianjin300192China
State Key Laboratory of Oncology in South ChinaCollaborative Innovation Center for Cancer MedicineSun Yat-sen University Cancer CenterGuangzhou510060China

§ Junying Wang, Xiaoju Cui, and Haobo Li contributed equally to this work.

Show Author Information

Graphical Abstract

Abstract

Normal levels of oxygen free radicals play an important role in cellular signal transduction, redox homeostasis, regulatory pathways, and metabolic processes. However, radiolysis of water induced by high-energy radiation can produce excessive amounts of exogenous oxygen free radicals, which cause severe oxidative damages to all cellular components, disrupt cellular structures and signaling pathways, and eventually lead to death. Herein, we show that hybrid nanoshields based on single-layer graphene encapsulating metal nanoparticles exhibit high catalytic activity in scavenging oxygen superoxide(·O2-), hydroxyl (·OH), and hydroperoxyl (HO2·) free radicals via electron transfer between the single-layer graphene and the metal core, thus achieving biocatalytic scavenging both in vitro and in vivo. The levels of the superoxide enzyme, DNA, and reactive oxygen species measured in vivo clearly show that the nanoshields can efficiently eliminate harmful oxygen free radicals at the cellular level, both in organs and circulating blood. Moreover, the nanoshieldslead to an increase in the overall survival rate of gamma ray-irradiated mice to up to 90%, showing the great potential of these systems as protective agentsagainst ionizing radiation.

Electronic Supplementary Material

Download File(s)
12274_2017_1912_MOESM1_ESM.pdf (3.7 MB)

References

1

Lushbaugh, C. C.; Casarett, G. W. The effects of gonadal irradiation in clinical radiation therapy: A review. Cancer 1976, 37, 1111-1120.

2

Laperriere, N.; Zuraw, L.; Cairncross, G. Radiotherapy for newly diagnosed malignant glioma in adults: A systematic review. Radiother. Oncol. 2002, 64, 259-273.

3

Bentzen, S. M. Preventing or reducing late side effects of radiation therapy: Radiobiology meets molecular pathology. Nat. Rev. Cancer 2006, 6, 702-713.

4

Evans, H. J.; Buckton, K. E.; Hamilton, G. E.; Carothers, A. Radiation-induced chromosome aberrations in nuclear-dockyard workers. Nature 1979, 277, 531-534.

5

Hainfeld, J. F.; Dilmanian, F. A.; Slatkin D. N.; Smilowitz, H. M. Radiotherapy enhancement with gold nanoparticles. J. Pharm. Pharmacol. 2008, 60, 977-985.

6

Chandra, J.; Samali, A.; Orrenius, S. Triggering and modulation of apoptosis by oxidative stress. Free Radic. Biol. Med. 2000, 29, 323-333.

7

Mishra, K. P. Cell membrane oxidative damage induced by gamma-radiation and apoptotic sensitivity. J. Environ. Pathol. Toxicol. Oncol. 2004, 23, 61-66.

8

Yuan, X.; Setyawati, M. I.; Leong, D. T.; Xie, J. P. Ultrasmall Ag+-rich nanoclusters as highly efficient nanoreservoirs for bacterial killing. Nano Res. 2014, 7, 301-307.

9

Talmage, D. W. Effect of ionizing radiation on resistance and infection. Annu. Rev. Microbiol. 1955, 9, 335-346.

10

Colon, J.; Herrera, L.; Smith, J.; Patil, S.; Komanski, C.; Kupelian, P.; Seal, S.; Jenkins, D. W.; Baker, C. H. Protection from radiation-induced pneumonitis using cerium oxide nanoparticles. Nanomed. -Nanotechnol. Biol. Med. 2009, 5, 225-231.

11

Fan, S.; Meng, Q.; Xu, J.; Jiao, Y.; Zhao, L.; Zhang, X.; Sarkar, F. H.; Brown, M. L.; Dritschilo, A.; Rosen, E. M. DIM (3, 3'-diindolylmethane) confers protection against ionizing radiation by a unique mechanism. Proc. Natl. Acad. Sci. USA 2013, 110, 18650-18655.

12

Zhang, X. -D.; Zhang, J. X.; Wang, J. Y.; Yang, J.; Chen, J.; Shen, X.; Deng, J.; Deng, D. H.; Long, W.; Sun, Y. -M. et al. Highly catalytic nanodots with renal clearance for radiation protection. ACS Nano 2016, 10, 4511-4519.

13

Tarnuzzer, R. W.; Colon, J.; Patil, S.; Seal, S. Vacancy engineered ceria nanostructures for protection from radiation-induced cellular damage. Nano Lett. 2005, 5, 2573-2577.

14

Li, Y. Y.; He, X.; Yin, J. J.; Ma, Y. H.; Zhang, P.; Li, J. Y.; Ding, Y. Y.; Zhang, J.; Zhao, Y. L.; Chai, Z. F. et al. Acquired superoxide-scavenging ability of ceria nanoparticles. Angew. Chem., Int. Ed. 2015, 54, 1832-1835.

15

Feliciano, C. P.; Tsuboi, K.; Suzuki, K.; Kimura, H.; Nagasaki, Y. Long-term bioavailability of redox nanoparticles effectively reduces organ dysfunctions and death in whole-body irradiated mice. Biomaterials 2017, 129, 68-82.

16

Pacelli, C.; Bryan, R. A.; Onofri, S.; Selbmann, L.; Shuryak, I.; Dadachova, E. Melanin is effective in protecting fast and slow growing fungi from various types of ionizing radiation. Environ. Microbiol. 2017, 19, 1612-1624.

17

Briggs, A.; Corde, S.; Oktaria, S.; Brown, R.; Rosenfeld, A.; Lerch, M.; Konstantinov, K.; Tehei, M. Cerium oxide nanoparticles: Influence of the high-Z component revealed on radioresistant 9L cell survival under X-ray irradiation. Nanomed. -Nanotechnol. Biol. Med. 2013, 9, 1098-1105.

18

Colon, J.; Hsieh, N.; Ferguson, A.; Kupelian, P.; Seal, S.; Jenkins, D. W.; Baker, C. H. Cerium oxide nanoparticles protect gastrointestinal epithelium from radiation-induced damage by reduction of reactive oxygen species and upregulation of superoxide dismutase 2. Nanomed. -Nanotechnol. Biol. Med. 2010, 6, 698-705.

19

Che, P.; Liu, W.; Chang, X. X.; Wang, A. H.; Han, Y. S. Multifunctional silver film with superhydrophobic and antibacterial properties. Nano Res. 2016, 9, 442-450.

20

Kang, D. -W.; Kim, C. K.; Jeong, H. -G.; Soh, M.; Kim, T.; Choi, I. -Y.; Ki, S. -K.; Yang, W.; Hyeon, T.; Lee, S. -H. Biocompatible custom ceria nanoparticles against reactive oxygen species resolve acute inflammatory reaction after intracerebral hemorrhage. Nano Res. 2017, 10, 2743-2760.

21

Deng, D. H.; Yu, L.; Chen, X. Q.; Wang, G. X.; Jin, L.; Pan, X. L.; Deng, J.; Sun, G. Q.; Bao, X. H. Iron encapsulated within pod-like carbon nanotubes for oxygen reduction reaction. Angew. Chem., Int. Ed. 2013, 52, 371-375.

22

Cui, X. J.; Ren, P. J.; Deng, D. H.; Deng, J.; Bao, X. H. Single layer graphene encapsulating non-precious metals as high-performance electrocatalysts for water oxidation. Energy Environ. Sci. 2016, 9, 123-129.

23

Deng, D. H.; Novoselov, K. S.; Fu, Q.; Zheng, N. F.; Tian, Z. Q.; Bao, X. H. Catalysis with two-dimensional materials and their heterostructures. Nat. Nanotechnol. 2016, 11, 218-230.

24

Gong, M.; Wang, D. -Y.; Chen, C. -C.; Hwang, B. -J.; Dai, H. J. A mini review on nickel-based electrocatalysts for alkaline hydrogen evolution reaction. Nano Res. 2016, 9, 28-46.

25

Gong, M.; Dai, H. J. A mini review of NiFe-based materials as highly active oxygen evolution reaction electrocatalysts. Nano Res. 2015, 8, 23-39.

26

Nørskov, J. K.; Rossmeisl, J.; Logadottir, A.; Lindqvist, L.; Kitchin, J. R.; Bligaard, T.; Jónsson, H. Origin of the overpotential for oxygen reduction at a fuel-cell cathode. J. Phys. Chem. B 2004, 108, 17886-17892.

27

Rossmeisl, J.; Karlberg, G. S.; Jaramillo, T.; Nørskov, J. K. Steady state oxygen reduction and cyclic voltammetry. Faraday Discuss. 2008, 140, 337-346.

28

Rossmeisl, J.; Qu, Z. W.; Zhu, H.; Kroes, G. J.; Nørskov, J. K. Electrolysis of water on oxide surfaces. J. Electroanal. Chem. 2007, 607, 83-89.

29

Yang, K.; Li, Y. J.; Tan, X. F.; Peng, R.; Liu, Z. Behavior and toxicity of graphene and its functionalized derivatives in biological systems. Small 2013, 9, 1492-1503.

30

Yang, K.; Zhang, S.; Zhang, G. X.; Sun, X. M.; Lee, S. -T.; Liu, Z. Graphene in mice: Ultrahigh in vivo tumor uptake and efficient photothermal therapy. Nano Lett. 2010, 10, 3318-3323.

31

Sun, X. M.; Liu, Z.; Welsher, K.; Robinson, J. T.; Goodwin, A.; Zaric, S.; Dai, H. Nano-graphene oxide for cellular imaging and drug delivery. Nano Res. 2008, 1, 203-212.

32

Liu, Z.; Tabakman, S.; Welsher, K.; Dai, H. J. Carbon nanotubes in biology and medicine: In vitro and in vivo detection, imaging and drug delivery. Nano Res. 2009, 2, 85-120.

33

Yu, C. Y. Y.; Xu, H. E.; Ji, S. L.; Kwok, R. T. K.; Lam, J. W. Y.; Li, X. L.; Krishnan, S.; Ding, D.; Tang, B. Z. Mitochondrion-anchoring photosensitizer with aggregation-induced emission characteristics synergistically boosts the radiosensitivity of cancer cells to ionizing radiation. Adv. Mater. 2017, 29, 1606167.

34

Zhang, X. D.; Chen, J.; Min, Y. H.; Park, G. B.; Shen, X.; Song, S. S.; Sun, Y. M.; Wang, H.; Long, W.; Xie, J. et al. Metabolizable Bi2Se3 nanoplates: Biodistribution, toxicity, and uses for cancer radiation therapy and imaging. Adv. Funct. Mater. 2014, 24, 1718-1729.

35

Zhang, X. D.; Chen, J.; Luo, Z. T.; Wu, D.; Shen, X.; Song, S. S.; Sun, Y. M.; Liu, P. X.; Zhao, J.; Huo, S. D. et al. Enhanced tumor accumulation of sub-2 nm gold nanoclusters for cancer radiation therapy. Adv. Healthcare Mater. 2014, 3, 133-141.

36

Hauck, T. S.; Anderson, R. E.; Fischer, H. C.; Newbigging, S.; Chan, W. C. W. In vivo quantum-dot toxicity assessment. Small 2010, 6, 138-144.

37

Liu, Z.; Davis, C.; Cai, W.; He, L.; Chen, X.; Dai, H. Circulation and long-term fate of functionalized, biocompatible single-walled carbon nanotubes in mice probed by Raman spectroscopy. Proc. Natl. Acad. Sci. USA 2008, 105, 1410-1415.

38

Huang, X. L.; Zhang, F.; Zhu, L.; Choi, K. Y.; Guo, N.; Guo, J. X.; Tackett, K.; Anilkumar, P.; Liu, G.; Quan, Q. M. et al. Effect of injection routes on the biodistribution, clearance, and tumor uptake of carbon dots. ACS Nano 2013, 7, 5684-5693.

39

Zhang, W. D.; Wang, C.; Li, Z. J.; Lu, Z. Z.; Li, Y. Y.; Yin, J. J.; Zhou, Y. T.; Gao, X. F.; Fang, Y.; Nie, G. J. et al. Unraveling stress-induced toxicity properties of graphene oxide and the underlying mechanism. Adv. Mater. 2012, 24, 5391-5397.

40

Khlebtsov, N.; Dykman, L. Biodistribution and toxicity of engineered gold nanoparticles: A review of in vitro and in vivo studies. Chem. Soc. Rev. 2011, 40, 1647-1671.

41

Choi, H. S.; Liu, W. H.; Misra, P.; Tanaka, E.; Zimmer, J. P.; Ipe, B. I.; Bawendi, M. G.; Frangioni, J. V. Renal clearance of quantum dots. Nat. Biotechnol. 2007, 25, 1165-1170.

42

Liu, J. B.; Yu, M. X.; Zhou, C.; Yang, S. Y.; Ning, X. H.; Zheng, J. Passive tumor targeting of renal-clearable luminescent gold nanoparticles: Long tumor retention and fast normal tissue clearance. J. Am. Chem. Soc. 2013, 135, 4978-4981.

43

Zhang, X. D.; Luo, Z. T.; Chen, J.; Shen, X.; Song, S. S.; Sun, Y. M.; Fan, S. J.; Fan, F. Y.; Leong, D. T.; Xie, J. P. Ultrasmall Au10-12(SG)10-12 nanomolecules for high tumor specificity and cancer radiotherapy. Adv. Mater. 2014, 26, 4565-4568.

44

Liu, J.; Wang, P. Y.; Zhang, X.; Wang, L. M.; Wang, D. L.; Gu, Z. J.; Tang, J. L.; Guo, M. Y.; Cao, M. J.; Zhou, H. G. et al. Rapid degradation and high renal clearance of Cu3BiS3 nanodots for efficient cancer diagnosis and photothermal therapy in vivo. ACS Nano 2016, 10, 4587-4598.

45

Zhang, X. D.; Wang, H. S.; Antaris, A. L.; Li, L. L.; Diao, S.; Ma, R.; Nguyen, A.; Hong, G. S.; Ma, Z. R.; Wang, J. et al. Traumatic brain injury imaging in the second near-infrared window with a molecular fluorophore. Adv. Mater. 2016, 28, 6872-6879.

46

Feng, L. Z.; Cheng, L.; Dong, Z. L.; Tao, D. L.; Barnhart, T. E.; Cai, W. B.; Chen, M. W.; Liu, Z. Theranostic liposomes with hypoxia-activated prodrug to effectively destruct hypoxic tumors post-photodynamic therapy. ACS Nano 2016, 11, 927-937.

47

Zhang, C.; Zhao, K. L.; Bu, W. B.; Ni, D. L.; Liu, Y. Y.; Feng, J. W.; Shi, J. L. Marriage of scintillator and semiconductor for synchronous radiotherapy and deep photodynamic therapy with diminished oxygen dependence. Angew. Chem., Int. Ed. 2015, 127, 1790-1794.

48

Cong, W. S.; Wang, P.; Qu, Y.; Tang, J. L.; Bai, R.; Zhao, Y. L.; Chen, C. Y.; Bi, X. L. Evaluation of the influence of fullerenol on aging and stress resistance using Caenorhabditis Elegans. Biomaterials 2015, 42, 78-86.

49

Zhang, W.; Hu, S. L.; Yin, J. -J.; He, W. W.; Lu, W.; Ma, M.; Gu, N.; Zhang, Y. Prussian blue nanoparticles as multienzyme mimetics and reactive oxygen species scavengers. J. Am. Chem. Soc. 2016, 138, 5860-5865.

50

Song, G. S.; Liang, C.; Yi, X.; Zhao, Q.; Cheng, L.; Yang, K.; Liu, Z. Perfluorocarbon-loaded hollow Bi2Se3 nanoparticles for timely supply of oxygen under near-infrared light to enhance the radiotherapy of cancer. Adv. Mater. 2016, 28, 2716-2723.

51

Nakayama, M.; Sasaki, R.; Mukohara, T.; Ogino, C.; Morita, K.; Umetsu, M.; Ohara, S.; Sato, K.; Numako, C.; Takami, S. et al. Abstract 3337: Titanium peroxide nanoparticles enhance antitumor efficacy through reactive oxygen species in pancreatic cancer radiation therapy. Cancer Res. 2015, 75, 3337.

52

Shim, M. S.; Xia, Y. N. A reactive oxygen species (ROS)-responsive polymer for safe, efficient, and targeted gene delivery in cancer cells. Angew. Chem., Int. Ed. 2013, 52, 6926-6929.

53

Yi, X.; Chen, L.; Zhong, X. Y.; Gao, R. L.; Qian, Y. T.; Wu, F.; Song, G. S.; Chai, Z. F.; Liu, Z.; Yang, K. Core-shell Au@ MnO2 nanoparticles for enhanced radiotherapy via improving the tumor oxygenation. Nano Res. 2016, 9, 3267-3278.

54

Wang, L. M.; Sun, Q.; Wang, X.; Wen, T.; Yin, J. -J.; Wang, P. Y.; Bai, R.; Zhang, X. -Q.; Zhang, L. -H.; Lu, A. -H. et al. Using hollow carbon nanospheres as a light-induced free radical generator to overcome chemotherapy resistance. J. Am. Chem. Soc. 2015, 137, 1947-1955.

55

Wang, L. M.; Zhang, T. L.; Li, P. Y.; Huang, W. X.; Tang, J. L.; Wang, P. Y.; Liu, J.; Yuan, Q. X.; Bai, R.; Li, B. et al. Use of synchrotron radiation-analytical techniques to reveal chemical origin of silver-nanoparticle cytotoxicity. ACS Nano 2015, 9, 6532-6547.

56

Kresse, G.; Furthmüller, J. Efficient iterative schemes for ab initio total energy calculations using a plane-wave basis set. Phys. Rev. B 1996, 54, 11169-11186.

57

Blöchl, P. E. Projector augmented-wave method. Phys. Rev. B 1994, 50, 17953-17979.

58

Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 3865-3868.

59

Monkhorst, H. J.; Pack, J. D. Special points for Brillouin-zone integrations. Phys. Rev. B 1976, 13, 5188-5192.

Nano Research
Pages 2821-2835
Cite this article:
Wang J, Cui X, Li H, et al. Highly efficient catalytic scavenging of oxygen free radicals with graphene-encapsulated metal nanoshields. Nano Research, 2018, 11(5): 2821-2835. https://doi.org/10.1007/s12274-017-1912-9

794

Views

33

Crossref

N/A

Web of Science

37

Scopus

4

CSCD

Altmetrics

Received: 03 October 2017
Revised: 25 October 2017
Accepted: 04 November 2017
Published: 12 May 2018
© Tsinghua University Press and Springer-Verlag GmbH Germany 2017
Return