Graphical Abstract

We have studied the magnetic and electrical transport properties of epitaxial NiAs-type CrTe thin films grown on SrTiO3(111) substrates. Unlike rectangle hysteresis loops obtained from magnetic measurements, we have identified intriguing extra bump/dip features from anomalous Hall experiments on the films with thicknesses less than 12 nm. This observed Hall anomaly is phenomenologically consistent with the occurrence of a topological Hall effect(THE) in chiral magnets with a skyrmion phase. Furthermore, the THE contribution can be tuned by the film thickness, showing the key contribution of asymmetric interfaces in stabilizing Néel-type skyrmions. Our work demonstrates that a CrTe thin film on SrTiO3(111) substrates is a good material candidate for studying real-space topological transport.
Nagaosa, N.; Tokura, Y. Topological properties and dynamics of magnetic skyrmions. Nat. Nanotechnol. 2013, 8, 899–911.
Rößler, U. K.; Bogdanov, A. N.; Pfleiderer, C. Spontaneous skyrmion ground states in magnetic metals. Nature 2006, 442, 797–801.
Mühlbauer, S.; Binz, B.; Jonietz, F.; Pfleiderer, C.; Rosch, A.; Neubauer, A.; Georgii, R.; Böni, P. Skyrmion lattice in a chiral magnet. Science 2009, 323, 915–919.
Fert, A.; Cros, V.; Sampaio, J. Skyrmions on the track. Nat. Nanotechnol. 2013, 8, 152–156.
Yu, X. Z.; Onose, Y.; Kanazawa, N.; Park, J. H.; Han, J. H.; Matsui, Y.; Nagaosa, N.; Tokura, Y. Real-space observation of a two-dimensional skyrmion crystal. Nature 2010, 465, 901–904.
Heinze, S.; von Bergmann, K.; Menzel, M.; Brede, J.; Kubetzka, A.; Wiesendanger, R.; Bihlmayer, G.; Blügel, S. Spontaneous atomic-scale magnetic skyrmion lattice in two dimensions. Nat. Phys. 2011, 7, 713–718.
Yasuda, K.; Wakatsuki, R.; Morimoto, T.; Yoshimi, R.; Tsukazaki, A.; Takahashi, K. S.; Ezawa, M.; Kawasaki, M.; Nagaosa, N.; Tokura, Y. Geometric Hall effects in topological insulator heterostructures. Nat. Phys. 2016, 12, 555–559.
Jiang, W. J.; Chen, G.; Liu, K.; Zang, J. D.; Te Velthuis, S. G. E.; Hoffmann, A. Skyrmions in magnetic multilayers. Phys. Rep. 2017, 704, 1–49.
Dzyaloshinskii, I. A thermodynamic theory of "weak" ferromagnetism of antiferromagnetics. J. Phys. Chem. Solids 1958, 4, 241–255.
Moriya, T. Anisotropic superexchange interaction and weak ferromagnetism. Phys. Rev. 1960, 120, 91–98.
Neubauer, A.; Pfleiderer, C.; Binz, B.; Rosch, A.; Ritz, R.; Niklowitz, P. G.; Böni, P. Topological Hall effect in the A phase of MnSi. Phys. Rev. Lett. 2009, 102, 186602.
Lee, M.; Kang, W.; Onose, Y.; Tokura, Y.; Ong, N. P. Unusual Hall effect anomaly in MnSi under pressure. Phys. Rev. Lett. 2009, 102, 186601.
Li, Y. F.; Kanazawa, N.; Yu, X. Z.; Tsukazaki, A.; Kawasaki, M.; Ichikawa, M.; Jin, X. F.; Kagawa, F.; Tokura, Y. Robust formation of skyrmions and topological Hall effect anomaly in epitaxial thin films of MnSi. Phys. Rev. Lett. 2013, 110, 117202.
Uchida, M.; Nagaosa, N.; He, J. P.; Kaneko, Y.; Iguchi, S.; Matsui, Y.; Tokura, Y. Topological spin textures in the helimagnet FeGe. Phys. Rev. B 2008, 77, 184402.
Yu, X. Z.; Kanazawa, N.; Onose, Y.; Kimoto, K.; Zhang, W. Z.; Ishiwata, S.; Matsui, Y.; Tokura, Y. Near room-temperature formation of a skyrmion crystal in thin-films of the helimagnet FeGe. Nat. Mater. 2011, 10, 106–109.
Dupé, B.; Hoffmann, M.; Paillard, C.; Heinze, S. Tailoring magnetic skyrmions in ultra-thin transition metal films. Nat. Commun. 2014, 5, 4030.
Romming, N.; Hanneken, C.; Menzel, M.; Bickel, J. E.; Wolter, B.; Bergmann, K. V.; Kubetzka, A.; Wiesendanger, R. Writing and deleting single magnetic skyrmions. Science 2013, 341, 636–639.
Matsuno, J.; Ogawa, N.; Yasuda, K.; Kagawa, F.; Koshibae, W.; Nagaosa, N.; Tokura, Y.; Kawasaki, M. Interface-driven topological Hall effect in SrRuO3-SrIrO3 bilayer. Sci. Adv. 2016, 2, e1600304.
Nagaosa, N.; Sinova, J.; Onoda, S.; MacDonald, A. H.; Ong, N. P. Anomalous hall effect. Rev. Mod. Phys. 2010, 82, 1539–1592.
Bogdanov, A. N.; Rößler, U. K. Chiral symmetry breaking in magnetic thin films and multilayers. Phys. Rev. Lett. 2001, 87, 037203.
Bode, M.; Heide, M.; Von Bergmann, K.; Ferriani, P.; Heinze, S.; Bihlmayer, G.; Kubetzka, A.; Pietzsch, O.; Blügel, S.; Wiesendanger, R. Chiral magnetic order at surfaces driven by inversion asymmetry. Nature 2007, 447, 190–193.
Cho, J.; Kim, N. H.; Lee, S.; Kim, J. S.; Lavrijsen, R.; Solignac, A.; Yin, Y. X.; Han, D. S.; Van Hoof, N. J.; Swagten, H. J. et al. Thickness dependence of the interfacial Dzyaloshinskii-Moriya interaction in inversion symmetry broken systems. Nat. Commun. 2015, 6, 7635.
Chen, G.; Ma, T. P.; N'Diaye, A. T.; Kwon, H.; Won, C.; Wu, Y. Z.; Schmid, A. K. Tailoring the chirality of magnetic domain walls by interface engineering. Nat. Commun. 2013, 4, 2671.
Yu, G. Q.; Upadhyaya, P.; Shao, Q. M.; Wu, H.; Yin, G.; Li, X.; He, C. L.; Jiang, W. J.; Han, X. F.; Amiri, P. K. et al. Room-temperature skyrmion shift device for memory application. Nano Lett. 2017, 17, 261–268.
Dijkstra, J.; Weitering, H. H.; Van Bruggen, C. F.; Haas, C.; De Groot, R. A. Band-structure calculations, and magnetic and transport properties of ferromagnetic chromium tellurides (CrTe, Cr3Te4, Cr2Te3). J. Phys. : Condens. Matter 1989, 1, 9141–9161.
Shimada, K.; Saitoh, T.; Namatame, H.; Fujimori, A. Photoemission study of itinerant ferromagnet Cr1−δTe. Phys. Rev. B 1996, 53, 7673–7683.
Ohsawa, A.; Yamaguchi, Y.; Kazama, N.; Yamauchi, H.; Watanabe, H. Magnetic anisotropy of Cr1−xTe with x=0.077. J. Phys. Soc. Jpn. 1972, 33, 1303–1307.
Hirone, T.; Chiba, S. On the magnetic anisotropy of single crystal of chromium telluride. J. Phys. Soc. Jpn. 1960, 15, 1991–1994.
Polesya, S.; Mankovsky, S.; Benea, D.; Ebert, H.; Bensch, W. Finite-temperature magnetism of CrTe and CrSe. J. Phys. : Condens. Matter 2010, 22, 156002.
Keskin, V.; Aktaş, B.; Schmalhorst, J.; Reiss, G.; Zhang, H.; Weischenberg, J.; Mokrousov, Y. Temperature and Co thickness dependent sign change of the anomalous Hall effect in Co/Pd multilayers: An experimental and theoretical study. Appl. Phys. Lett. 2013, 102, 022416.
Winer, G.; Segal, A.; Karpovski, M.; Shelukhin, V.; Gerber, A. Probing Co/Pd interfacial alloying by the extraordinary Hall effect. J. Appl. Phys. 2015, 118, 173901.
Lee, W. L.; Watauchi, S.; Miller, V. L.; Cava, R. J.; Ong, N. P. Dissipationless anomalous Hall current in the ferromagnetic spinel CuCr2Se4−xBrx. Science 2004, 303, 1647–1649.
Sampaio, J.; Cros, V.; Rohart, S.; Thiaville, A.; Fert, A. Nucleation, stability and current-induced motion of isolated magnetic skyrmions in nanostructures. Nat. Nanotechnol. 2013, 8, 839–844.
Jiang, W. J.; Upadhyaya, P.; Zhang, W.; Yu, G. Q.; Jungfleisch, M. B.; Fradin, F. Y.; Pearson, J. E.; Tserkovnyak, Y.; Wang, K. L.; Heinonen, O. et al. Blowing magnetic skyrmion bubbles. Science 2015, 349, 283–286.
Fert, A.; Reyren, N.; Cros, V. Magnetic skyrmions: Advances in physics and potential applications. Nat. Rev. Mater. 2017, 2, 17031.
Wiesendanger, R. Nanoscale magnetic skyrmions in metallic films and multilayers: A new twist for spintronics. Nat. Rev. Mater. 2016, 1, 16044.