Article Link
Collect
Submit Manuscript
Show Outline
Outline
Graphical Abstract
Abstract
Keywords
References
Show full outline
Hide outline
Research Article

Observation of unconventional anomalous Hall effect in epitaxial CrTe thin films

Dapeng Zhao1,§Liguo Zhang1,§Iftikhar Ahmed Malik2,§Menghan Liao1Wenqiang Cui1Xinqiang Cai1Cheng Zheng1Luxin Li1Xiaopeng Hu1Ding Zhang1,3Jinxing Zhang2Xi Chen1,3Wanjun Jiang1,3()Qikun Xue1,3()
State Key Laboratory of Low Dimensional Quantum PhysicsDepartment of PhysicsTsinghua UniversityBeijing100084China
Department of PhysicsBeijing Normal UniversityBeijing100875China
Collaborative Innovation Center of Quantum MatterBeijing100084China

§ Dapeng Zhao, Liguo Zhang, and Iftikhar Ahmed Malik contributed equally to this work.

Show Author Information

Graphical Abstract

View original image Download original image

Abstract

We have studied the magnetic and electrical transport properties of epitaxial NiAs-type CrTe thin films grown on SrTiO3(111) substrates. Unlike rectangle hysteresis loops obtained from magnetic measurements, we have identified intriguing extra bump/dip features from anomalous Hall experiments on the films with thicknesses less than 12 nm. This observed Hall anomaly is phenomenologically consistent with the occurrence of a topological Hall effect(THE) in chiral magnets with a skyrmion phase. Furthermore, the THE contribution can be tuned by the film thickness, showing the key contribution of asymmetric interfaces in stabilizing Néel-type skyrmions. Our work demonstrates that a CrTe thin film on SrTiO3(111) substrates is a good material candidate for studying real-space topological transport.

References

1

Nagaosa, N.; Tokura, Y. Topological properties and dynamics of magnetic skyrmions. Nat. Nanotechnol. 2013, 8, 899–911.

2

Rößler, U. K.; Bogdanov, A. N.; Pfleiderer, C. Spontaneous skyrmion ground states in magnetic metals. Nature 2006, 442, 797–801.

3

Mühlbauer, S.; Binz, B.; Jonietz, F.; Pfleiderer, C.; Rosch, A.; Neubauer, A.; Georgii, R.; Böni, P. Skyrmion lattice in a chiral magnet. Science 2009, 323, 915–919.

4

Fert, A.; Cros, V.; Sampaio, J. Skyrmions on the track. Nat. Nanotechnol. 2013, 8, 152–156.

5

Yu, X. Z.; Onose, Y.; Kanazawa, N.; Park, J. H.; Han, J. H.; Matsui, Y.; Nagaosa, N.; Tokura, Y. Real-space observation of a two-dimensional skyrmion crystal. Nature 2010, 465, 901–904.

6

Heinze, S.; von Bergmann, K.; Menzel, M.; Brede, J.; Kubetzka, A.; Wiesendanger, R.; Bihlmayer, G.; Blügel, S. Spontaneous atomic-scale magnetic skyrmion lattice in two dimensions. Nat. Phys. 2011, 7, 713–718.

7

Yasuda, K.; Wakatsuki, R.; Morimoto, T.; Yoshimi, R.; Tsukazaki, A.; Takahashi, K. S.; Ezawa, M.; Kawasaki, M.; Nagaosa, N.; Tokura, Y. Geometric Hall effects in topological insulator heterostructures. Nat. Phys. 2016, 12, 555–559.

8

Jiang, W. J.; Chen, G.; Liu, K.; Zang, J. D.; Te Velthuis, S. G. E.; Hoffmann, A. Skyrmions in magnetic multilayers. Phys. Rep. 2017, 704, 1–49.

9

Dzyaloshinskii, I. A thermodynamic theory of "weak" ferromagnetism of antiferromagnetics. J. Phys. Chem. Solids 1958, 4, 241–255.

10

Moriya, T. Anisotropic superexchange interaction and weak ferromagnetism. Phys. Rev. 1960, 120, 91–98.

11

Neubauer, A.; Pfleiderer, C.; Binz, B.; Rosch, A.; Ritz, R.; Niklowitz, P. G.; Böni, P. Topological Hall effect in the A phase of MnSi. Phys. Rev. Lett. 2009, 102, 186602.

12

Lee, M.; Kang, W.; Onose, Y.; Tokura, Y.; Ong, N. P. Unusual Hall effect anomaly in MnSi under pressure. Phys. Rev. Lett. 2009, 102, 186601.

13

Li, Y. F.; Kanazawa, N.; Yu, X. Z.; Tsukazaki, A.; Kawasaki, M.; Ichikawa, M.; Jin, X. F.; Kagawa, F.; Tokura, Y. Robust formation of skyrmions and topological Hall effect anomaly in epitaxial thin films of MnSi. Phys. Rev. Lett. 2013, 110, 117202.

14

Uchida, M.; Nagaosa, N.; He, J. P.; Kaneko, Y.; Iguchi, S.; Matsui, Y.; Tokura, Y. Topological spin textures in the helimagnet FeGe. Phys. Rev. B 2008, 77, 184402.

15

Yu, X. Z.; Kanazawa, N.; Onose, Y.; Kimoto, K.; Zhang, W. Z.; Ishiwata, S.; Matsui, Y.; Tokura, Y. Near room-temperature formation of a skyrmion crystal in thin-films of the helimagnet FeGe. Nat. Mater. 2011, 10, 106–109.

16

Dupé, B.; Hoffmann, M.; Paillard, C.; Heinze, S. Tailoring magnetic skyrmions in ultra-thin transition metal films. Nat. Commun. 2014, 5, 4030.

17

Romming, N.; Hanneken, C.; Menzel, M.; Bickel, J. E.; Wolter, B.; Bergmann, K. V.; Kubetzka, A.; Wiesendanger, R. Writing and deleting single magnetic skyrmions. Science 2013, 341, 636–639.

18

Matsuno, J.; Ogawa, N.; Yasuda, K.; Kagawa, F.; Koshibae, W.; Nagaosa, N.; Tokura, Y.; Kawasaki, M. Interface-driven topological Hall effect in SrRuO3-SrIrO3 bilayer. Sci. Adv. 2016, 2, e1600304.

19

Nagaosa, N.; Sinova, J.; Onoda, S.; MacDonald, A. H.; Ong, N. P. Anomalous hall effect. Rev. Mod. Phys. 2010, 82, 1539–1592.

20

Bogdanov, A. N.; Rößler, U. K. Chiral symmetry breaking in magnetic thin films and multilayers. Phys. Rev. Lett. 2001, 87, 037203.

21

Bode, M.; Heide, M.; Von Bergmann, K.; Ferriani, P.; Heinze, S.; Bihlmayer, G.; Kubetzka, A.; Pietzsch, O.; Blügel, S.; Wiesendanger, R. Chiral magnetic order at surfaces driven by inversion asymmetry. Nature 2007, 447, 190–193.

22

Cho, J.; Kim, N. H.; Lee, S.; Kim, J. S.; Lavrijsen, R.; Solignac, A.; Yin, Y. X.; Han, D. S.; Van Hoof, N. J.; Swagten, H. J. et al. Thickness dependence of the interfacial Dzyaloshinskii-Moriya interaction in inversion symmetry broken systems. Nat. Commun. 2015, 6, 7635.

23

Chen, G.; Ma, T. P.; N'Diaye, A. T.; Kwon, H.; Won, C.; Wu, Y. Z.; Schmid, A. K. Tailoring the chirality of magnetic domain walls by interface engineering. Nat. Commun. 2013, 4, 2671.

24

Yu, G. Q.; Upadhyaya, P.; Shao, Q. M.; Wu, H.; Yin, G.; Li, X.; He, C. L.; Jiang, W. J.; Han, X. F.; Amiri, P. K. et al. Room-temperature skyrmion shift device for memory application. Nano Lett. 2017, 17, 261–268.

25

Dijkstra, J.; Weitering, H. H.; Van Bruggen, C. F.; Haas, C.; De Groot, R. A. Band-structure calculations, and magnetic and transport properties of ferromagnetic chromium tellurides (CrTe, Cr3Te4, Cr2Te3). J. Phys. : Condens. Matter 1989, 1, 9141–9161.

26

Shimada, K.; Saitoh, T.; Namatame, H.; Fujimori, A. Photoemission study of itinerant ferromagnet Cr1−δTe. Phys. Rev. B 1996, 53, 7673–7683.

27

Ohsawa, A.; Yamaguchi, Y.; Kazama, N.; Yamauchi, H.; Watanabe, H. Magnetic anisotropy of Cr1−xTe with x=0.077. J. Phys. Soc. Jpn. 1972, 33, 1303–1307.

28

Hirone, T.; Chiba, S. On the magnetic anisotropy of single crystal of chromium telluride. J. Phys. Soc. Jpn. 1960, 15, 1991–1994.

29

Polesya, S.; Mankovsky, S.; Benea, D.; Ebert, H.; Bensch, W. Finite-temperature magnetism of CrTe and CrSe. J. Phys. : Condens. Matter 2010, 22, 156002.

30

Keskin, V.; Aktaş, B.; Schmalhorst, J.; Reiss, G.; Zhang, H.; Weischenberg, J.; Mokrousov, Y. Temperature and Co thickness dependent sign change of the anomalous Hall effect in Co/Pd multilayers: An experimental and theoretical study. Appl. Phys. Lett. 2013, 102, 022416.

31

Winer, G.; Segal, A.; Karpovski, M.; Shelukhin, V.; Gerber, A. Probing Co/Pd interfacial alloying by the extraordinary Hall effect. J. Appl. Phys. 2015, 118, 173901.

32

Lee, W. L.; Watauchi, S.; Miller, V. L.; Cava, R. J.; Ong, N. P. Dissipationless anomalous Hall current in the ferromagnetic spinel CuCr2Se4−xBrx. Science 2004, 303, 1647–1649.

33

Sampaio, J.; Cros, V.; Rohart, S.; Thiaville, A.; Fert, A. Nucleation, stability and current-induced motion of isolated magnetic skyrmions in nanostructures. Nat. Nanotechnol. 2013, 8, 839–844.

34

Jiang, W. J.; Upadhyaya, P.; Zhang, W.; Yu, G. Q.; Jungfleisch, M. B.; Fradin, F. Y.; Pearson, J. E.; Tserkovnyak, Y.; Wang, K. L.; Heinonen, O. et al. Blowing magnetic skyrmion bubbles. Science 2015, 349, 283–286.

35

Fert, A.; Reyren, N.; Cros, V. Magnetic skyrmions: Advances in physics and potential applications. Nat. Rev. Mater. 2017, 2, 17031.

36

Wiesendanger, R. Nanoscale magnetic skyrmions in metallic films and multilayers: A new twist for spintronics. Nat. Rev. Mater. 2016, 1, 16044.

Nano Research
Pages 3116-3121
Cite this article:
Zhao D, Zhang L, Malik IA, et al. Observation of unconventional anomalous Hall effect in epitaxial CrTe thin films. Nano Research, 2018, 11(6): 3116-3121. https://doi.org/10.1007/s12274-017-1913-8
Part of a topical collection:
Metrics & Citations  
Article History
Copyright
Return