Article Link
Collect
Submit Manuscript
Show Outline
Outline
Graphical Abstract
Abstract
Keywords
Electronic Supplementary Material
References
Show full outline
Hide outline
Research Article

Generation of graphene-based aerogel microspheres for broadband and tunable high-performance microwave absorption by electrospinning-freeze drying process

Fanbin MengHuagao Wang WeiZijian ChenTian LiChunyuan LiYu XuanZuowan Zhou()
Key Laboratory of Advanced Technologies of Materials (Ministry of Education)School of Materials Science and EngineeringSouthwest Jiaotong UniversityChengdu610031China
Show Author Information
An erratum to this article is available online at:

Graphical Abstract

View original image Download original image

Abstract

Despite recent progress in the synthesis and application of graphene-based aerogels, some challenges such as scalable and cost-effective production, and miniaturization still remain, which hinder the practical application of these materials. Here we report a large-scale electrospinning method to generate graphene-based aerogel microspheres (AMs), which show broadband, tunable and high-performance microwave absorption. Graphene/Fe3O4 AMs with a large number of openings with hierarchical connecting radial microchannels can be obtained via electrospinning-freeze drying followed by calcination. Importantly, for a given Fe3O4: graphene mass ratio, altering the shape of aerogel monoliths or powders into aerogel microspheres leads to unique electromagnetic wave properties. As expected, the reflection loss of graphene/Fe3O4 AMs-1:1 with only 5 wt.% absorber loading reaches?51.5 dB at 9.2 GHz with a thickness of 4.0 mm and a broad absorption bandwidth (RL < -10 dB) of 6.5 GHz. Furthermore, switching to coaxial electrospinning enables the fabrication of SiO2 coatings to construct graphene/Fe3O4@SiO2 core?shell AMs. The coatings influence the electromagnetic wave absorption of graphene/Fe3O4 AMs significantly. In view of these advantages, we believe that this processing technique may be extended to fabricate a wide range of unique graphene-based architectures for functional design and applications.

Electronic Supplementary Material

Download File(s)
12274_2017_1915_MOESM1_ESM.pdf (2.2 MB)

References

1

Pan, Y. F.; Wang, G. S.; Liu, L.; Guo, L.; Yu, S. H. Binary synergistic enhancement of dielectric and microwave absorption properties: A composite of arm symmetrical PbS dendrites and polyvinylidene fluoride. Nano Res. 2017, 10, 284-294.

2

Wen, B.; Cao, M. S.; Lu, M. M.; Cao, W. Q.; Shi, H. L.; Liu, J.; Wang, X. X.; Jin, H. B.; Fang, X. Y.; Wang, W. Z. et al. Reduced graphene oxides: Light-weight and high-efficiency electromagnetic interference shielding at elevated temperatures. Adv. Mater. 2014, 26, 3484-3489.

3

Wu, B.; Tuncer, H. M.; Katsounaros, A.; Wu, W. P.; Cole, M. T.; Ying, K.; Zhang, L. H.; Milne, W. I.; Hao, Y. Microwave absorption and radiation from large-area multilayer CVD graphene. Carbon 2014, 77, 814-822.

4

Cao, M. S.; Wang, X. X.; Cao, W. Q.; Yuan, J. Ultrathin graphene: Electrical properties and highly efficient electromagnetic interference shielding. J. Mater. Chem. C 2015, 3, 6589-6599.

5

Meng, F. B.; Wei, W.; Chen, J. J.; Chen, X. N.; Xu, X. L.; Jiang, M.; Jun, L.; Zhou, Z. W. Growth of Fe3O4 nanosheet arrays on graphene by a mussel-inspired polydopamine adhesive for remarkable enhancement in electromagnetic absorptions. RSC Adv. 2015, 5, 101121-101126.

6

Ding, Y.; Zhang, Z.; Luo, B. H.; Liao, Q. L.; Liu, L.; Liu, Y. C.; Zhang, Y. Investigation on the broadband electromagnetic wave absorption properties and mechanism of Co3O4-nanosheets/reduced-graphene-oxide composite. Nano Res. 2017, 10, 980-990.

7

Li, Y.A.; Zhao, Y.; Lu, X. Y.; Zhu, Y.; Jiang, L. Self-healing superhydrophobic polyvinylidene fluoride/Fe3O4@polypyrrole fiber with core-sheath structures for superior microwave absorption. Nano Res. 2016, 9, 2034-2045.

8

Yang, W. L.; Gao, Z.; Wang, J.; Ma, J.; Zhang, M. L.; Liu, L. H. Solvothermal one-step synthesis of Ni-Al layered double hydroxide/carbon nanotube/reduced graphene oxide sheet ternary nanocomposite with ultrahigh capacitance for supercapacitors. ACS Appl. Mater. Interfaces 2013, 5, 5443-5454.

9

Lee, S. H.; Sridhar, V.; Jung, J. H.; Karthikeyan, K.; Lee, Y. S.; Mukherjee, R.; Koratkar, N.; Oh, I. K. Graphene-nanotube-iron hierarchical nanostructure as lithium ion battery anode. ACS Nano 2013, 7, 4242-4251.

10

Sun, H.; Che, R. C.; You, X.; Jiang, Y. S.; Yang, Z. B.; Deng, J.; Qiu, L. B.; Peng, H. C. Cross-stacking aligned carbon-nanotube films to tune microwave absorption frequencies and increase absorption intensities. Adv. Mater. 2014, 26, 8120-8125.

11

Chen, Z. P.; Xu, C.; Ma, C. Q.; Ren, W. C.; Cheng, H. M. Lightweight and flexible graphene foam composites for high-performance electromagnetic interference shielding. Adv. Mater. 2013, 25, 1296-1300.

12

Zhang, Y.; Huang, Y.; Zhang, T. F.; Chang, H. C.; Xiao, P. S.; Chen, H. H.; Huang, Z. Y.; Chen, Y. S. Broadband and tunable high-performance microwave absorption of an ultralight and highly compressible graphene foam. Adv. Mater. 2015, 27, 2049-2053.

13

Zhang, Y.; Huang, Y.; Chen, H. H.; Huang, Z. Y.; Yang, Y.; Xiao, P. S.; Zhou, Y.; Chen, Y. S. Composition and structure control of ultralight graphene foam for high-performance microwave absorption. Carbon 2016, 105, 438-447.

14

Shen, B.; Li, Y.; Yi, D.; Zhai, W. T.; Wei, X. C.; Zheng, W. G. Microcellular graphene foam for improved broadband electromagnetic interference shielding. Carbon 2016, 102, 154-160.

15

Fang, Z. G.; Cao, X. M.; Li, C. S.; Zhang, H. T.; Zhang, J. S.; Zhang, H. Y. Investigation of carbon foams as microwave absorber: Numerical prediction and experimental validation. Carbon 2006, 44, 3368-3370.

16

Wang, C. H.; Ding, Y. J.; Yuan, Y.; He, X. D.; Wu, X. T.; Hu, S.; Zou, M. C.; Zhao, W. H.; Yang, L. S.; Cao, A. Y. et al. Graphene aerogel composites derived from recycled cigarette filters for electromagnetic wave absorption. J. Mater. Chem. C 2015, 3, 11893-11901.

17

Wu, Y.; Wang, Z. Y.; Liu, X.; Shen, X.; Zheng, Q. B.; Xue, Q.; Kim, J. K. Ultralight graphene foam/conductive polymer composites for exceptional electromagnetic interference shielding. ACS Appl. Mater. Interfaces 2017, 9, 9059-9069.

18

Liu, B.; Li, J. H.; Wang, L. F.; Ren, J. H.; Xu, Y. F. Ultralight graphene aerogel enhanced with transformed micro-structure led by polypyrrole nano-rods and its improved microwave absorption properties. Comp Part A: Appl. Sci. Manufact. 2017, 97, 141-150.

19

Song, C. Q.; Yin, X. W.; Han, M. K.; Li, X. L.; Hou, Z. X.; Zhang, L. T.; Cheng, L. F. Three-dimensional reduced graphene oxide foam modified with ZnO nanowires for enhanced microwave absorption properties. Carbon 2017, 116, 50-58.

20

Han, M. K.; Yin, X. W.; Hou, Z. X.; Song, C. Q.; Li, X. L.; Zhang, L. T.; Cheng, L. F. Flexible and thermostable graphene/SiC nanowire foam composites with tunable electromagnetic wave absorption properties. ACS Appl. Mater. Interfaces 2017, 9, 11803-11810.

21

Liu, W. W.; Li, H.; Zeng, Q. P.; Duan, H. N.; Guo, Y. P.; Liu, X. F.; Sun, C. Y.; Liu, H. Z. Fabrication of ultralight three-dimensional graphene networks with strong electromagnetic wave absorption properties. J. Mater. Chem. A 2015, 3, 3739-3747.

22

Ouyang, A.; Cao, A. Y.; Hu, S.; Li, Y. H.; Xu, R. Q.; Wei, J. Q.; Zhu, H. W.; Wu, D. H. Polymer-coated graphene aerogel beads and supercapacitor application. ACS Appl. Mater. Interfaces 2016, 8, 11179-11187.

23

Wang, J.; Shang, L. R.; Cheng, Y.; Ding, H. B.; Zhao, Y. J.; Gu, Z. Z. Microfluidic generation of porous particles encapsulating spongy graphene for oil absorption. Small 2015, 11, 3890-3895.

24

Liao, S. C.; Zhai, T. L; Xia, H. S. Highly adsorptive graphene aerogel microspheres with center-diverging microchannel structures. J. Mater. Chem. A 2016, 4, 1068-1077.

25

Zhao, C. Z.; Fan, J.; Chen, D.; Xu, Y.; Wang, T. Microfluidics-generated graphene oxide microspheres and their application to removal of perfluorooctane sulfonate from polluted water. Nano Res. 2016, 9, 866-875.

26

Guo, P.; Song, H. H.; Chen, X. H. Hollow graphene oxide spheres self-assembled by W/O emulsion. J. Mater. Chem. 2010, 20, 4867-4874.

27

Fan, W.; Zhang, C.; Tjiu, W. W.; Pramoda, K. P.; He, C. B.; Liu, T. X. Graphene-wrapped polyaniline hollow spheres as novel hybrid electrode materials for supercapacitor applications. ACS Appl. Mater. Interfaces 2013, 5, 3382-3391.

28

Melcher, J. R; Taylor, G. I. Electrohydrodynamics: A review of the role of interfacial shear stresses. Annu. Rev. Fluid Mech. 1969, 1, 111-146.

29

Guo, M.; Ding, B.; Li, X. H.; Wang, X. L.; Yu, J. Y.; Wang, M. R. Amphiphobic nanofibrous silica mats with flexible and high-heat-resistant properties. J. Phys. Chem. C 2010, 114, 916-921.

30

Zou, J. L.; Kim, F. K. Diffusion driven layer-by-layer assembly of graphene oxide nanosheets into porous three-dimensional macrostructures. Nat. Commun. 2014, 5, 5254.

31

Kumar, R.; Singh, R. K.; Vaz, A. R.; Savu, R.; Moshkalev, S. A. Self-assembled and one-step synthesis of interconnected 3D network of Fe3O4/reduced graphene oxide nanosheets hybrid for high-performance supercapacitor electrode. ACS Appl. Mater. Interfaces 2017, 9, 8880-8890.

32

Jian, X.; Wu, B.; Wei, Y. F.; Dou, S. X.; Wang, X. L.; He, W. D.; Mahmood, N. Facile synthesis of Fe3O4/GCs composites and their enhanced microwave absorption properties. ACS Appl. Mater. Interfaces 2016, 8, 6101-6109.

33

Huang, H.; Chen, P. W.; Zhang, X. T.; Lu, Y.; Zhan, W. C. Edge-to-edge assembled graphene oxide aerogels with outstanding mechanical performance and superhigh chemical activity. Small 2013, 9, 1397-1404.

34

Abdelrazek, E. M. Influence of FeCl3 filler on the structure and physical properties of polyethyl-methacrylate films. Phys. B: Condens. Matter 2007, 400, 26-32.

35

Xiao, L.; Wu, D. Q.; Han, S.; Huang, Y. S.; Li, S.; He, M. Z.; Zhang, F.; Feng, X. L. Self-assembled Fe2O3/graphene aerogel with high lithium storage performance. ACS Appl. Mater. Interfaces 2013, 5, 3764-3769.

36

Xu, X.; Li, H.; Zhang, Q. Q.; Hu, H.; Zhao, Z. B.; Li, J. H.; Li, J. Y.; Qiao, Y.; Gogotsi, Y. Self-sensing, ultralight, and conductive 3D graphene/iron oxide aerogel elastomer deformable in a magnetic field. ACS Nano 2015, 9, 3969-3977.

37

Yan, L. L.; Liu, J.; Zhao, S. C.; Zhang, B.; Gao, Z.; Ge, H. B.; Chen, Y.; Cao, M. S.; Qin, Y. Coaxial multi-interface hollow Ni-Al2O3-ZnO nanowires tailored by atomic layer deposition for selective-frequency absorptions. Nano Res. 2017, 10, 1595-1607.

38

Wu, F.; Xie A. M.; Sun, M. X.; Wang, Y.; Wang, M. W. Reduced graphene oxide (RGO) modified spongelike polypyrrole (PPy) aerogel for excellent electromagnetic absorption. J. Mater. Chem. A 2015, 3, 14358-14369.

39

Xie, A. M.; Jiang, W. C.; Wu, F.; Dai, X. Q.; Sun, M. X.; Wang, Y.; Wang, M. Y. Interfacial synthesis of polypyrrole microparticles for effective dissipation of electromagnetic waves. J. Appl. Phys. 2015, 118, 204105.

40

Lu, M. M.; Cao, W. Q.; Shi, H. L.; Fang, X. Y.; Yang, J.; Hou, Z. L.; Jin, H. B.; Wang, W. Z.; Yuan, J.; Cao, M. S. Multi-wall carbon nanotubes decorated with ZnO nanocrystals: Mild solution-process synthesis and highly efficient microwave absorption properties at elevated temperature. J. Mater. Chem. A 2014, 2, 10540-10547.

41

Meng, F. B.; Wei, W.; Chen, X. G.; Xu, X. L.; Jiang, M.; Jun, L.; Wang Y.; Zhou, Z. W. Design of porous C@Fe3O4 hybrid nanotubes with excellent microwave absorption. Phys. Chem. Chem. Phys. 2016, 18, 2510-2516.

42

Wu, T.; Liu, Y.; Zeng, X.; Cui, T. T.; Zhao, Y. T.; Li, Y. N.; Tong, G. X. Facile hydrothermal synthesis of Fe3O4/C core-shell nanorings for efficient low-frequency microwave absorption. ACS Appl. Mater. Interfaces 2016, 8, 7370-7380.

43

Wang, G. Z.; Gao, Z.; Wan, G. P.; Lin, S. W.; Yang, P.; Qin, Y. High densities of magnetic nanoparticles supported on graphene fabricated by atomic layer deposition and their use as efficient synergistic microwave absorbers. Nano Res. 2014, 7, 704-716.

44

Michielssen, E.; Sajer, J, M.; Ranjithan, S.; Mittra, R. Design of lightweight, broad-band microwave absorbers using genetic algorithms. IEEE Trans. Microw. Theory Techmol. 1993, 41, 1024-1031.

45

Liu, Z. F.; Bai, G.; Huang, Y.; Li, F. F.; Ma, Y. F.; Guo, T. Y.; He, X. B.; Lin, X.; Gao, H. J.; Chen, Y. S. Microwave absorption of single-walled carbon nanotubes/soluble cross-linked polyurethane composites. J. Phys. Chem. C 2007, 111, 13696-13700.

46

Zhao, B.; Guo, X. Q.; Zhao, W. Y.; Deng, J. S.; Fan, B. B.; Shao, G.; Bai, Z. Y.; Zhang, R. Facile synthesis of yolk-shell Ni@void@SnO2(Ni3Sn2) ternary composites via galvanic replacement/Kirkendall effect and their enhanced microwave absorption properties. Nano Res. 2017, 10, 331-343.

47

Liu, X. G.; Ou, Z. Q.; Geng, D. Y.; Han, Z.; Xie, Z. G.; Zhang, Z. D. Enhanced natural resonance and attenuation properties in superparamagnetic graphite-coated FeNi3 nanocapsules. J. Phys. D: Appl. Phys. 2009, 42, 155004.

48

Liang, C. Y.; Gou, Y. J.; Wu, L. N.; Zhou, J. G.; Kang, Z. Y.; Shen, B. Z.; Wang, Z. J. Nature of electromagnetic-transparent SiO2 shell in hybrid nanostructure enhancing electromagnetic attenuation. J. Phys. Chem. C 2016, 120, 12967-12973.

Nano Research
Pages 2847-2861
Cite this article:
Meng F, Wang H, Wei, et al. Generation of graphene-based aerogel microspheres for broadband and tunable high-performance microwave absorption by electrospinning-freeze drying process. Nano Research, 2018, 11(5): 2847-2861. https://doi.org/10.1007/s12274-017-1915-6
Metrics & Citations  
Article History
Copyright
Return