AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Generation of graphene-based aerogel microspheres for broadband and tunable high-performance microwave absorption by electrospinning-freeze drying process

Fanbin MengHuagao Wang WeiZijian ChenTian LiChunyuan LiYu XuanZuowan Zhou( )
Key Laboratory of Advanced Technologies of Materials (Ministry of Education)School of Materials Science and EngineeringSouthwest Jiaotong UniversityChengdu610031China
Show Author Information
An erratum to this article is available online at:

Graphical Abstract

Abstract

Despite recent progress in the synthesis and application of graphene-based aerogels, some challenges such as scalable and cost-effective production, and miniaturization still remain, which hinder the practical application of these materials. Here we report a large-scale electrospinning method to generate graphene-based aerogel microspheres (AMs), which show broadband, tunable and high-performance microwave absorption. Graphene/Fe3O4 AMs with a large number of openings with hierarchical connecting radial microchannels can be obtained via electrospinning-freeze drying followed by calcination. Importantly, for a given Fe3O4: graphene mass ratio, altering the shape of aerogel monoliths or powders into aerogel microspheres leads to unique electromagnetic wave properties. As expected, the reflection loss of graphene/Fe3O4 AMs-1:1 with only 5 wt.% absorber loading reaches?51.5 dB at 9.2 GHz with a thickness of 4.0 mm and a broad absorption bandwidth (RL < -10 dB) of 6.5 GHz. Furthermore, switching to coaxial electrospinning enables the fabrication of SiO2 coatings to construct graphene/Fe3O4@SiO2 core?shell AMs. The coatings influence the electromagnetic wave absorption of graphene/Fe3O4 AMs significantly. In view of these advantages, we believe that this processing technique may be extended to fabricate a wide range of unique graphene-based architectures for functional design and applications.

Electronic Supplementary Material

Download File(s)
12274_2017_1915_MOESM1_ESM.pdf (2.2 MB)

References

1

Pan, Y. F.; Wang, G. S.; Liu, L.; Guo, L.; Yu, S. H. Binary synergistic enhancement of dielectric and microwave absorption properties: A composite of arm symmetrical PbS dendrites and polyvinylidene fluoride. Nano Res. 2017, 10, 284-294.

2

Wen, B.; Cao, M. S.; Lu, M. M.; Cao, W. Q.; Shi, H. L.; Liu, J.; Wang, X. X.; Jin, H. B.; Fang, X. Y.; Wang, W. Z. et al. Reduced graphene oxides: Light-weight and high-efficiency electromagnetic interference shielding at elevated temperatures. Adv. Mater. 2014, 26, 3484-3489.

3

Wu, B.; Tuncer, H. M.; Katsounaros, A.; Wu, W. P.; Cole, M. T.; Ying, K.; Zhang, L. H.; Milne, W. I.; Hao, Y. Microwave absorption and radiation from large-area multilayer CVD graphene. Carbon 2014, 77, 814-822.

4

Cao, M. S.; Wang, X. X.; Cao, W. Q.; Yuan, J. Ultrathin graphene: Electrical properties and highly efficient electromagnetic interference shielding. J. Mater. Chem. C 2015, 3, 6589-6599.

5

Meng, F. B.; Wei, W.; Chen, J. J.; Chen, X. N.; Xu, X. L.; Jiang, M.; Jun, L.; Zhou, Z. W. Growth of Fe3O4 nanosheet arrays on graphene by a mussel-inspired polydopamine adhesive for remarkable enhancement in electromagnetic absorptions. RSC Adv. 2015, 5, 101121-101126.

6

Ding, Y.; Zhang, Z.; Luo, B. H.; Liao, Q. L.; Liu, L.; Liu, Y. C.; Zhang, Y. Investigation on the broadband electromagnetic wave absorption properties and mechanism of Co3O4-nanosheets/reduced-graphene-oxide composite. Nano Res. 2017, 10, 980-990.

7

Li, Y.A.; Zhao, Y.; Lu, X. Y.; Zhu, Y.; Jiang, L. Self-healing superhydrophobic polyvinylidene fluoride/Fe3O4@polypyrrole fiber with core-sheath structures for superior microwave absorption. Nano Res. 2016, 9, 2034-2045.

8

Yang, W. L.; Gao, Z.; Wang, J.; Ma, J.; Zhang, M. L.; Liu, L. H. Solvothermal one-step synthesis of Ni-Al layered double hydroxide/carbon nanotube/reduced graphene oxide sheet ternary nanocomposite with ultrahigh capacitance for supercapacitors. ACS Appl. Mater. Interfaces 2013, 5, 5443-5454.

9

Lee, S. H.; Sridhar, V.; Jung, J. H.; Karthikeyan, K.; Lee, Y. S.; Mukherjee, R.; Koratkar, N.; Oh, I. K. Graphene-nanotube-iron hierarchical nanostructure as lithium ion battery anode. ACS Nano 2013, 7, 4242-4251.

10

Sun, H.; Che, R. C.; You, X.; Jiang, Y. S.; Yang, Z. B.; Deng, J.; Qiu, L. B.; Peng, H. C. Cross-stacking aligned carbon-nanotube films to tune microwave absorption frequencies and increase absorption intensities. Adv. Mater. 2014, 26, 8120-8125.

11

Chen, Z. P.; Xu, C.; Ma, C. Q.; Ren, W. C.; Cheng, H. M. Lightweight and flexible graphene foam composites for high-performance electromagnetic interference shielding. Adv. Mater. 2013, 25, 1296-1300.

12

Zhang, Y.; Huang, Y.; Zhang, T. F.; Chang, H. C.; Xiao, P. S.; Chen, H. H.; Huang, Z. Y.; Chen, Y. S. Broadband and tunable high-performance microwave absorption of an ultralight and highly compressible graphene foam. Adv. Mater. 2015, 27, 2049-2053.

13

Zhang, Y.; Huang, Y.; Chen, H. H.; Huang, Z. Y.; Yang, Y.; Xiao, P. S.; Zhou, Y.; Chen, Y. S. Composition and structure control of ultralight graphene foam for high-performance microwave absorption. Carbon 2016, 105, 438-447.

14

Shen, B.; Li, Y.; Yi, D.; Zhai, W. T.; Wei, X. C.; Zheng, W. G. Microcellular graphene foam for improved broadband electromagnetic interference shielding. Carbon 2016, 102, 154-160.

15

Fang, Z. G.; Cao, X. M.; Li, C. S.; Zhang, H. T.; Zhang, J. S.; Zhang, H. Y. Investigation of carbon foams as microwave absorber: Numerical prediction and experimental validation. Carbon 2006, 44, 3368-3370.

16

Wang, C. H.; Ding, Y. J.; Yuan, Y.; He, X. D.; Wu, X. T.; Hu, S.; Zou, M. C.; Zhao, W. H.; Yang, L. S.; Cao, A. Y. et al. Graphene aerogel composites derived from recycled cigarette filters for electromagnetic wave absorption. J. Mater. Chem. C 2015, 3, 11893-11901.

17

Wu, Y.; Wang, Z. Y.; Liu, X.; Shen, X.; Zheng, Q. B.; Xue, Q.; Kim, J. K. Ultralight graphene foam/conductive polymer composites for exceptional electromagnetic interference shielding. ACS Appl. Mater. Interfaces 2017, 9, 9059-9069.

18

Liu, B.; Li, J. H.; Wang, L. F.; Ren, J. H.; Xu, Y. F. Ultralight graphene aerogel enhanced with transformed micro-structure led by polypyrrole nano-rods and its improved microwave absorption properties. Comp Part A: Appl. Sci. Manufact. 2017, 97, 141-150.

19

Song, C. Q.; Yin, X. W.; Han, M. K.; Li, X. L.; Hou, Z. X.; Zhang, L. T.; Cheng, L. F. Three-dimensional reduced graphene oxide foam modified with ZnO nanowires for enhanced microwave absorption properties. Carbon 2017, 116, 50-58.

20

Han, M. K.; Yin, X. W.; Hou, Z. X.; Song, C. Q.; Li, X. L.; Zhang, L. T.; Cheng, L. F. Flexible and thermostable graphene/SiC nanowire foam composites with tunable electromagnetic wave absorption properties. ACS Appl. Mater. Interfaces 2017, 9, 11803-11810.

21

Liu, W. W.; Li, H.; Zeng, Q. P.; Duan, H. N.; Guo, Y. P.; Liu, X. F.; Sun, C. Y.; Liu, H. Z. Fabrication of ultralight three-dimensional graphene networks with strong electromagnetic wave absorption properties. J. Mater. Chem. A 2015, 3, 3739-3747.

22

Ouyang, A.; Cao, A. Y.; Hu, S.; Li, Y. H.; Xu, R. Q.; Wei, J. Q.; Zhu, H. W.; Wu, D. H. Polymer-coated graphene aerogel beads and supercapacitor application. ACS Appl. Mater. Interfaces 2016, 8, 11179-11187.

23

Wang, J.; Shang, L. R.; Cheng, Y.; Ding, H. B.; Zhao, Y. J.; Gu, Z. Z. Microfluidic generation of porous particles encapsulating spongy graphene for oil absorption. Small 2015, 11, 3890-3895.

24

Liao, S. C.; Zhai, T. L; Xia, H. S. Highly adsorptive graphene aerogel microspheres with center-diverging microchannel structures. J. Mater. Chem. A 2016, 4, 1068-1077.

25

Zhao, C. Z.; Fan, J.; Chen, D.; Xu, Y.; Wang, T. Microfluidics-generated graphene oxide microspheres and their application to removal of perfluorooctane sulfonate from polluted water. Nano Res. 2016, 9, 866-875.

26

Guo, P.; Song, H. H.; Chen, X. H. Hollow graphene oxide spheres self-assembled by W/O emulsion. J. Mater. Chem. 2010, 20, 4867-4874.

27

Fan, W.; Zhang, C.; Tjiu, W. W.; Pramoda, K. P.; He, C. B.; Liu, T. X. Graphene-wrapped polyaniline hollow spheres as novel hybrid electrode materials for supercapacitor applications. ACS Appl. Mater. Interfaces 2013, 5, 3382-3391.

28

Melcher, J. R; Taylor, G. I. Electrohydrodynamics: A review of the role of interfacial shear stresses. Annu. Rev. Fluid Mech. 1969, 1, 111-146.

29

Guo, M.; Ding, B.; Li, X. H.; Wang, X. L.; Yu, J. Y.; Wang, M. R. Amphiphobic nanofibrous silica mats with flexible and high-heat-resistant properties. J. Phys. Chem. C 2010, 114, 916-921.

30

Zou, J. L.; Kim, F. K. Diffusion driven layer-by-layer assembly of graphene oxide nanosheets into porous three-dimensional macrostructures. Nat. Commun. 2014, 5, 5254.

31

Kumar, R.; Singh, R. K.; Vaz, A. R.; Savu, R.; Moshkalev, S. A. Self-assembled and one-step synthesis of interconnected 3D network of Fe3O4/reduced graphene oxide nanosheets hybrid for high-performance supercapacitor electrode. ACS Appl. Mater. Interfaces 2017, 9, 8880-8890.

32

Jian, X.; Wu, B.; Wei, Y. F.; Dou, S. X.; Wang, X. L.; He, W. D.; Mahmood, N. Facile synthesis of Fe3O4/GCs composites and their enhanced microwave absorption properties. ACS Appl. Mater. Interfaces 2016, 8, 6101-6109.

33

Huang, H.; Chen, P. W.; Zhang, X. T.; Lu, Y.; Zhan, W. C. Edge-to-edge assembled graphene oxide aerogels with outstanding mechanical performance and superhigh chemical activity. Small 2013, 9, 1397-1404.

34

Abdelrazek, E. M. Influence of FeCl3 filler on the structure and physical properties of polyethyl-methacrylate films. Phys. B: Condens. Matter 2007, 400, 26-32.

35

Xiao, L.; Wu, D. Q.; Han, S.; Huang, Y. S.; Li, S.; He, M. Z.; Zhang, F.; Feng, X. L. Self-assembled Fe2O3/graphene aerogel with high lithium storage performance. ACS Appl. Mater. Interfaces 2013, 5, 3764-3769.

36

Xu, X.; Li, H.; Zhang, Q. Q.; Hu, H.; Zhao, Z. B.; Li, J. H.; Li, J. Y.; Qiao, Y.; Gogotsi, Y. Self-sensing, ultralight, and conductive 3D graphene/iron oxide aerogel elastomer deformable in a magnetic field. ACS Nano 2015, 9, 3969-3977.

37

Yan, L. L.; Liu, J.; Zhao, S. C.; Zhang, B.; Gao, Z.; Ge, H. B.; Chen, Y.; Cao, M. S.; Qin, Y. Coaxial multi-interface hollow Ni-Al2O3-ZnO nanowires tailored by atomic layer deposition for selective-frequency absorptions. Nano Res. 2017, 10, 1595-1607.

38

Wu, F.; Xie A. M.; Sun, M. X.; Wang, Y.; Wang, M. W. Reduced graphene oxide (RGO) modified spongelike polypyrrole (PPy) aerogel for excellent electromagnetic absorption. J. Mater. Chem. A 2015, 3, 14358-14369.

39

Xie, A. M.; Jiang, W. C.; Wu, F.; Dai, X. Q.; Sun, M. X.; Wang, Y.; Wang, M. Y. Interfacial synthesis of polypyrrole microparticles for effective dissipation of electromagnetic waves. J. Appl. Phys. 2015, 118, 204105.

40

Lu, M. M.; Cao, W. Q.; Shi, H. L.; Fang, X. Y.; Yang, J.; Hou, Z. L.; Jin, H. B.; Wang, W. Z.; Yuan, J.; Cao, M. S. Multi-wall carbon nanotubes decorated with ZnO nanocrystals: Mild solution-process synthesis and highly efficient microwave absorption properties at elevated temperature. J. Mater. Chem. A 2014, 2, 10540-10547.

41

Meng, F. B.; Wei, W.; Chen, X. G.; Xu, X. L.; Jiang, M.; Jun, L.; Wang Y.; Zhou, Z. W. Design of porous C@Fe3O4 hybrid nanotubes with excellent microwave absorption. Phys. Chem. Chem. Phys. 2016, 18, 2510-2516.

42

Wu, T.; Liu, Y.; Zeng, X.; Cui, T. T.; Zhao, Y. T.; Li, Y. N.; Tong, G. X. Facile hydrothermal synthesis of Fe3O4/C core-shell nanorings for efficient low-frequency microwave absorption. ACS Appl. Mater. Interfaces 2016, 8, 7370-7380.

43

Wang, G. Z.; Gao, Z.; Wan, G. P.; Lin, S. W.; Yang, P.; Qin, Y. High densities of magnetic nanoparticles supported on graphene fabricated by atomic layer deposition and their use as efficient synergistic microwave absorbers. Nano Res. 2014, 7, 704-716.

44

Michielssen, E.; Sajer, J, M.; Ranjithan, S.; Mittra, R. Design of lightweight, broad-band microwave absorbers using genetic algorithms. IEEE Trans. Microw. Theory Techmol. 1993, 41, 1024-1031.

45

Liu, Z. F.; Bai, G.; Huang, Y.; Li, F. F.; Ma, Y. F.; Guo, T. Y.; He, X. B.; Lin, X.; Gao, H. J.; Chen, Y. S. Microwave absorption of single-walled carbon nanotubes/soluble cross-linked polyurethane composites. J. Phys. Chem. C 2007, 111, 13696-13700.

46

Zhao, B.; Guo, X. Q.; Zhao, W. Y.; Deng, J. S.; Fan, B. B.; Shao, G.; Bai, Z. Y.; Zhang, R. Facile synthesis of yolk-shell Ni@void@SnO2(Ni3Sn2) ternary composites via galvanic replacement/Kirkendall effect and their enhanced microwave absorption properties. Nano Res. 2017, 10, 331-343.

47

Liu, X. G.; Ou, Z. Q.; Geng, D. Y.; Han, Z.; Xie, Z. G.; Zhang, Z. D. Enhanced natural resonance and attenuation properties in superparamagnetic graphite-coated FeNi3 nanocapsules. J. Phys. D: Appl. Phys. 2009, 42, 155004.

48

Liang, C. Y.; Gou, Y. J.; Wu, L. N.; Zhou, J. G.; Kang, Z. Y.; Shen, B. Z.; Wang, Z. J. Nature of electromagnetic-transparent SiO2 shell in hybrid nanostructure enhancing electromagnetic attenuation. J. Phys. Chem. C 2016, 120, 12967-12973.

Nano Research
Pages 2847-2861
Cite this article:
Meng F, Wang H, Wei, et al. Generation of graphene-based aerogel microspheres for broadband and tunable high-performance microwave absorption by electrospinning-freeze drying process. Nano Research, 2018, 11(5): 2847-2861. https://doi.org/10.1007/s12274-017-1915-6

917

Views

119

Crossref

N/A

Web of Science

123

Scopus

8

CSCD

Altmetrics

Received: 29 August 2017
Revised: 04 November 2017
Accepted: 07 November 2017
Published: 12 May 2018
© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2017
Return