AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Ultra-robust triboelectric nanogenerator for harvesting rotary mechanical energy

Xinyu Du1,§Nianwu Li1,§Yuebo Liu2Jiaona Wang2Zuqing Yuan1,4Yingying Yin1,4Ran Cao1,4Shuyu Zhao2Bin Wang2Zhong Lin Wang1,3,4Congju Li1( )
Beijing Institute of Nanoenergy and NanosystemsChinese Academy of SciencesNational Center for Nanoscience and Technology (NCNST)Beijing100083China
School of Materials Science & EngineeringBeijing Institute of Fashion TechnologyBeijing100029China
School of Material Science and EngineeringGeorgia Institute of TechnologyAtlanta, Georgia30332-0245USA
University of Chinese Academy of SciencesBeijing100049China

§ Xinyu Du and Nianwu Li contributed equally to this work.

Show Author Information

Graphical Abstract

Abstract

Triboelectric nanogenerators (TENGs) for harvesting rotary mechanical energy are mostly based on in-plane sliding or free-standing mode. However, the relative displacement between two contacting triboelectric layers causes abrasion, which lowers the output power and reduces service life. Therefore, it is important to develop a method to minimize abrasion when harvesting rotary mechanical energy. Here, we report a scale-like structured TENG (SL-TENG), in which two triboelectric layers work under a contact-separation mode to avoid in-plane relative sliding in order to minimize abrasion. As a result, the SL-TENG exhibits outstanding robustness. For example, the output voltage of the SL-TENG does not exhibit any measurable decay although this output has been continuously generated through more than a million cycles. Moreover, at a very low rotation rate of 120 rpm, the SL-TENG can generate a maximum short-circuit current of 78 μA, delivering an instantaneous power density of 2.54 W/m2 to an external load. In relation to this, a Li-ion battery was charged using the SL-TENG. After a 30-min charging time, the battery achieved a discharge capacity of 0.1 mAh. Through a power management circuit integrated into the SL-TENG, a continuous direct current (DC) of 5 V is outputted, providing sufficient DC power for driving a radio-frequency wireless sensor and other conventional electronics.

Electronic Supplementary Material

Video
12274_2017_1916_MOESM3_ESM.avi
12274_2017_1916_MOESM4_ESM.avi
Download File(s)
12274_2017_1916_MOESM1_ESM.pdf (1.9 MB)

References

1

Wang, Z. L. Catch wave power in floating nets. Nature 2017, 542, 159-160.

2

Herbert, G. M. J.; Iniyan, S.; Sreevalsan, E.; Rajapandian, S. A review of wind energy technologies. Renewable Sustainable Energy Rev. 2007, 11, 1117-1145.

3

Ackermann, T.; Söder, L. Wind energy technology and current status: A review. Renewable Sustainable Energy Rev. 2000, 4, 315-374.

4

Wang, Z. L.; Chen, J.; Lin, L. Progress in triboelectric nanogenerators as a new energy technology and self-powered sensors. Energy Environ. Sci. 2015, 8, 2250-2282.

5

Chen, J.; Yang, J.; Li, Z. L.; Fan, X.; Zi, Y. L.; Jing, Q. S.; Guo, H. Y.; Wen, Z.; Pradel, K. C.; Niu, S. M. et al. Networks of triboelectric nanogenerators for harvesting water wave energy: A potential approach toward blue energy. ACS Nano 2015, 9, 3324-3331.

6

Bae, J.; Lee, J.; Kim, S.; Ha, J.; Lee, B. -S.; Park, Y.; Choong, C.; Kim, J. -B.; Wang, Z. L.; Kim, H. -Y. et al. Flutter-driven triboelectrification for harvesting wind energy. Nat. Commun. 2014, 5, 4929.

7

Zi, Y. L.; Guo, H. Y.; Wen, Z.; Yeh, M. -H.; Hu, C. G.; Wang, Z. L. Harvesting low-frequency (< 5 Hz) irregular mechanical energy: A possible killer application of triboelectric nanogenerator. ACS Nano 2016, 10, 4797-4805.

8

Wang, Z. L. Triboelectric nanogenerators as new energy technology for self-powered systems and as active mechanical and chemical sensors. ACS Nano 2013, 7, 9533-9557.

9

Zhu, G.; Lin, Z. -H.; Jing, Q. S.; Bai, P.; Pan, C. F.; Yang, Y.; Zhou, Y. S.; Wang, Z. L. Toward large-scale energy harvesting by a nanoparticle-enhanced triboelectric nanogenerator. Nano Lett. 2013, 13, 847-853.

10

Zhang, X. -S.; Han, M. -D.; Wang, R. -X.; Zhu, F. -Y.; Li, Z. -H.; Wang, W.; Zhang, H. -X. Frequency-multiplication high-output triboelectric nanogenerator for sustainably powering biomedical microsystems. Nano Lett. 2013, 13, 1168-1172.

11

Bai, P.; Zhu, G.; Lin, Z. -H.; Jing, Q. S.; Chen, J.; Zhang, G.; Ma, J. S.; Wang, Z. L. Integrated multilayered triboelectric nanogenerator for harvesting biomechanical energy from human motions. ACS Nano 2013, 7, 3713-3719.

12

Chen, J.; Zhu, G.; Yang, W. Q.; Jing, Q. S.; Bai, P.; Yang, Y.; Hou, T. -C.; Wang, Z. L. Harmonic-resonator-based triboelectric nanogenerator as a sustainable power source and a self-powered active vibration sensor. Adv. Mater. 2013, 25, 6094-6099.

13

Ahmed, A.; Hassan, I.; Ibn-Mohammed, T.; Mostafa, H.; Reaney, I. M.; Koh, L. S. C.; Zu, J.; Wang, Z. L. Environmental life cycle assessment and techno-economic analysis of triboelectric nanogenerators. Energy Environ. Sci. 2017, 10, 653-671.

14

Fan, F. -R.; Tian, Z. -Q.; Wang, Z. L. Flexible triboelectric generator. Nano Energy 2012, 1, 328-334.

15

Luo, J. J.; Tang, W.; Fan, F. R.; Liu, C. F.; Pang, Y. K.; Cao, G. Z.; Wang, Z. L. Transparent and flexible self-charging power film and its application in a sliding unlock system in touchpad technology. ACS Nano 2016, 10, 8078-8086.

16

Jing, Q. S.; Xie, Y. N.; Zhu, G.; Han, R. P. S.; Wang, Z. L. Self-powered thin-film motion vector sensor. Nat. Commun. 2015, 6, 8031.

17

Wang, Z. L. Self-powered nanosensors and nanosystems. Adv. Mater. 2012, 24, 280-285.

18

Yang, Y.; Zhang, H. L.; Chen, J.; Jing, Q. S.; Zhou, Y. S.; Wen, X. N.; Wang, Z. L. Single-electrode-based sliding triboelectric nanogenerator for self-powered displacement vector sensor system. ACS Nano 2013, 7, 7342-7351.

19

Wang, S. H.; Lin, L.; Wang, Z. L. Triboelectric nanogenerators as self-powered active sensors. Nano Energy 2015, 11, 436-462.

20

Chen, S. W.; Wang, N.; Ma, L.; Li, T.; Willander, M.; Jie, Y.; Cao, X.; Wang, Z. L. Triboelectric nanogenerator for sustainable wastewater treatment via a self-powered electrochemical process. Adv. Energy Mater. 2016, 6, 1501778.

21

Tang, W.; Han, Y.; Han, C. B.; Gao, C. Z.; Cao, X.; Wang, Z. L. Self-powered water splitting using flowing kinetic energy. Adv. Mater. 2015, 27, 272-276.

22

Li, A. Y.; Zi, Y. L.; Guo, H. Y.; Wang, Z. L.; Fernandez, F. M. Triboelectric nanogenerators for sensitive nano-coulomb molecular mass spectrometry. Nat. Nanotechnol. 2017, 12, 481-487.

23

Chen, S. W.; Gao, C. Z.; Tang, W.; Zhu, H. R.; Han, Y.; Jiang, Q. W.; Li, T.; Cao, X.; Wang, Z. L. Self-powered cleaning of air pollution by wind driven triboelectric nanogenerator. Nano Energy 2015, 14, 217-225.

24

Zhu, G.; Pan, C. F.; Guo, W. X.; Chen, C. -Y.; Zhou, Y. S.; Yu, R. M.; Wang, Z. L. Triboelectric-generator-driven pulse electrodeposition for micropatterning. Nano Lett. 2012, 12, 4960-4965.

25

Niu, S. M.; Wang, X. F.; Yi, F.; Zhou, Y. S.; Wang, Z. L. A universal self-charging system driven by random biomechanical energy for sustainable operation of mobile electronics. Nat. Commun. 2015, 6, 8975.

26

Chun, J.; Ye, B. U.; Lee, J. W.; Choi, D.; Kang, C. -Y.; Kim, S. -W.; Wang, Z. L.; Baik, J. M. Boosted output performance of triboelectric nanogenerator via electric double layer effect. Nat. Commun. 2016, 7, 12985.

27

Wang, S. H.; Lin, L.; Wang, Z. L. Nanoscale triboelectric- effect-enabled energy conversion for sustainably powering portable electronics. Nano Lett. 2012, 12, 6339-6346.

28

Chen, J.; Zhu, G.; Yang, J.; Jing, Q. S.; Bai, P.; Yang, W. Q.; Qi, X. W.; Su, Y. J.; Wang, Z. L. Personalized keystroke dynamics for self-powered human-machine interfacing. ACS Nano 2015, 9, 105-116.

29

Wen, Z.; Chen, J.; Yeh, M. -H.; Guo, H. Y.; Li, Z. L.; Fan, X.; Zhang, T. J.; Zhu, L. P.; Wang, Z. L. Blow-driven triboelectric nanogenerator as an active alcohol breath analyzer. Nano Energy 2015, 16, 38-46.

30

Pu, X.; Liu, M. M.; Li, L. X.; Zhang, C.; Pang, Y. K.; Jiang, C. Y.; Shao, L. H.; Hu, W. G.; Wang, Z. L. Efficient charging of Li-ion batteries with pulsed output current of triboelectric nanogenerators. Adv. Sci. 2016, 3, 1500255.

31

Zhu, G.; Chen, J.; Zhang, T. J.; Jing, Q. S.; Wang, Z. L. Radial-arrayed rotary electrification for high performance triboelectric generator. Nat. Commun. 2014, 5, 3426.

32

Xie, Y. N.; Wang, S. H.; Lin, L.; Jing, Q. S.; Lin, Z. -H.; Niu, S. M.; Wu, Z. Y.; Wang, Z. L. Rotary triboelectric nanogenerator based on a hybridized mechanism for harvesting wind energy. ACS Nano 2013, 7, 7119-7125.

33

Zhang, C.; Tang, W.; Pang, Y.; Han, C. B.; Wang, Z. L. Active micro-actuators for optical modulation based on a planar sliding triboelectric nanogenerator. Adv. Mater. 2015, 27, 719-726.

34

Zhu, G.; Chen, J.; Liu, Y.; Bai, P.; Zhou, Y. S.; Jing, Q. S.; Pan, C. F.; Wang, Z. L. Linear-grating triboelectric generator based on sliding electrification. Nano Lett. 2013, 13, 2282-2289.

35

Niu, S. M.; Liu, Y.; Wang, S. H.; Lin, L.; Zhou, Y. S.; Hu, Y. F.; Wang, Z. L. Theory of sliding-mode triboelectric nanogenerators. Adv. Mater. 2013, 25, 6184-6193.

36

Chen, J.; Yang, J.; Guo, H. Y.; Li, Z. L.; Zheng, L.; Su, Y. J.; Wen, Z.; Fan, X.; Wang, Z. L. Automatic mode transition enabled robust triboelectric nanogenerators. ACS Nano 2015, 9, 12334-12343.

37

Fang, H.; Wu, W. Z.; Song, J. H.; Wang, Z. L. Controlled growth of aligned polymer nanowires. J. Phys. Chem. C 2009, 113, 16571-16574.

38

Wang, S. H.; Xie, Y. N.; Niu, S. M.; Lin, L.; Liu, C.; Zhou, Y. S.; Wang, Z. L. Maximum surface charge density for triboelectric nanogenerators achieved by ionized-air injection: Methodology and theoretical understanding. Adv. Mater. 2014, 26, 6720-6728.

39

Wang, Z. L. On Maxwell's displacement current for energy and sensors: The origin of nanogenerators. Mater. Today 2017, 20, 74-82.

40

Zi, Y. L.; Wang, J.; Wang, S. H.; Li, S. M.; Wen, Z.; Guo, H. Y.; Wang, Z. L. Effective energy storage from a triboelectric nanogenerator. Nat. Commun. 2016, 7, 10987.

Nano Research
Pages 2862-2871
Cite this article:
Du X, Li N, Liu Y, et al. Ultra-robust triboelectric nanogenerator for harvesting rotary mechanical energy. Nano Research, 2018, 11(5): 2862-2871. https://doi.org/10.1007/s12274-017-1916-5

744

Views

50

Crossref

N/A

Web of Science

49

Scopus

2

CSCD

Altmetrics

Received: 26 September 2017
Revised: 30 October 2017
Accepted: 07 November 2017
Published: 12 May 2018
© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2017
Return