AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Surface charge tunable nanoparticles for TNF-α siRNA oral delivery for treating ulcerative colitis

Shoaib Iqbal1Xiaojiao Du2,3,4,5( )Jilong Wang1Hongjun Li2,3Youyong Yuan2,3,5Jun Wang2,3,4,5,6
School of Life SciencesUniversity of Science and Technology of ChinaHefei230027China
School of MedicineSouth China University of TechnologyGuangzhou510006China
Institutes for Life SciencesSouth China University of TechnologyGuangzhou510006China
Key Laboratory of Biomedical Materials of Ministry of EducationSouth China University of TechnologyGuangzhou510641China
National Engineering Research Center for Tissue Restoration and ReconstructionGuangzhou510006China
Research Institute for Food Nutrition and Human HealthGuangzhou510641China
Show Author Information

Graphical Abstract

Abstract

Nanoparticle (NP) drug delivery systems have been successfully designed and implemented to orally deliver siRNAs for inflammatory disorders. However, the influence of surface charge on orally administered siRNA nanocarriers has not been investigated. In this study, we prepared structurally related poly(ethylene glycol)-block-poly(lactic-co-glycolic acid) (PEG5K-b-PLGA10K) NPs with the assistance of a synthesized lipid featuring surface amine groups for subsequent charge tuning. NPs were prepared by a double emulsion method, and their surface charge could be tuned and controlled by a succinylation reaction to yield NPs with different surface charges, while maintaining their size and composition. The prepared NPs were termed as aminated NPs (ANPs), plain NPs (PNPs), or carboxylated NPs (CNPs) based on their surface charge. All NPs exhibited the desired structural stability and siRNA integrity after enzymatic degradation. In vivo studies showed that ANPs significantly accumulated in inflamed colons, and they were successful in decreasing TNF-α secretion and mRNA expression levels while maintaining colonic histology in a murine model of acute ulcerative colitis (UC). This study described a methodology to modify the surface charge of siRNA-encapsulating polymeric NPs and highlighted the influence of surface charge on oral delivery of siRNA for localized inflammatory disorders.

Electronic Supplementary Material

Download File(s)
12274_2017_1918_MOESM1_ESM.pdf (1.6 MB)

References

1

Podolsky, D. K. Inflammatory bowel disease. N. Engl. J. Med. 2002, 347, 417-429.

2

Ardizzone, S.; Bianchi Porro, G. Inflammatory bowel disease: New insights into pathogenesis and treatment. J. Intern. Med. 2002, 252, 475-496.

3

Peyrin-Biroulet, L. Anti-TNF therapy in inflammatory bowel diseases: A huge review. Minerva Gastroenterol. Dietol. 2010, 56, 233-243.

4

Dretzke, J.; Edlin, R.; Round, J.; Connock, M.; Hulme, C.; Czeczot, J.; Fry-Smith, A.; McCabe, C.; Meads, C. A systematic review and economic evaluation of the use of tumour necrosis factor-alpha (TNF-alpha) inhibitors, adalimumab and infliximab, for Crohn's disease. Health Technol. Assess. 2011, 15, 1-244.

5

Nielsen, O. H. New strategies for treatment of inflammatory bowel disease. Front. Med. (Lausanne) 2014, 1, 3.

6

Wilson, D. S.; Dalmasso, G.; Wang, L. X.; Sitaraman, S. V.; Merlin, D.; Murthy, N. Orally delivered thioketal nanoparticles loaded with TNF-α-siRNA target inflammation and inhibit gene expression in the intestines. Nat. Mater. 2010, 9, 923-928.

7

McCarthy, J.; O'Neill, M. J.; Bourre, L.; Walsh, D.; Quinlan, A.; Hurley, G.; Ogier, J.; Shanahan, F.; Melgar, S.; Darcy, R. et al. Gene silencing of TNF-alpha in a murine model of acute colitis using a modified cyclodextrin delivery system. J. Control. Release 2013, 168, 28-34.

8

Laroui, H.; Theiss, A. L.; Yan, Y. T.; Dalmasso, G.; Nguyen, H. T. T.; Sitaraman, S. V.; Merlin, D. Functional TNFα gene silencing mediated by polyethyleneimine/TNFα siRNA nanocomplexes in inflamed colon. Biomaterials 2011, 32, 1218-1228.

9

Xiao, B.; Laroui, H.; Ayyadurai, S.; Viennois, E.; Charania, M. A.; Zhang, Y. C.; Merlin, D. Mannosylated bioreducible nanoparticle-mediated macrophage-specific TNF-α RNA interference for IBD therapy. Biomaterials 2013, 34, 7471-7482.

10

Kriegel, C.; Amiji, M. Oral TNF-α gene silencing using a polymeric microsphere-based delivery system for the treatment of inflammatory bowel disease. J. Control. Release 2011, 150, 77-86.

11

He, C. B.; Yin, L. C.; Tang, C.; Yin, C. H. Trimethyl chitosan- cysteine nanoparticles for systemic delivery of TNF-α siRNA via oral and intraperitoneal routes. Pharm. Res. 2013, 30, 2596-2606.

12

Aouadi, M.; Tesz, G. J.; Nicoloro, S. M.; Wang, M. X.; Chouinard, M.; Soto, E.; Ostroff, G. R.; Czech, M. P. Orally delivered siRNA targeting macrophage Map4k4 suppresses systemic inflammation. Nature 2009, 458, 1180-1184.

13

Kriegel, C.; Amiji, M. M. Dual TNF-α/Cyclin D1 gene silencing with an oral polymeric microparticle system as a novel strategy for the treatment of inflammatory bowel disease. Clin. Transl. Gastroenterol. 2011, 2, e2.

14

Zhang, J.; He, C. B.; Tang, C.; Yin, C. H. Ternary polymeric nanoparticles for oral siRNA delivery. Pharm. Res. 2013, 30, 1228-1239.

15

He, C. B.; Yin, L. C.; Tang, C.; Yin, C. H. Multifunctional polymeric nanoparticles for oral delivery of TNF-α siRNA to macrophages. Biomaterials 2013, 34, 2843-2854.

16

He, C. B.; Yin, L. C.; Song, Y. D.; Tang, C.; Yin, C. H. Optimization of multifunctional chitosan-siRNA nanoparticles for oral delivery applications, targeting TNF-α silencing in rats. Acta Biomater. 2015, 17, 98-106.

17

Chu, S.; Tang, C.; Yin, C. H. Effects of mannose density on in vitro and in vivo cellular uptake and RNAi efficiency of polymeric nanoparticles. Biomaterials 2015, 52, 229-239.

18

Cheng, W. Y.; Tang, C.; Yin, C. H. Effects of particle size and binding affinity for small interfering RNA on the cellular processing, intestinal permeation and anti-inflammatory efficacy of polymeric nanoparticles. J. Gene Med. 2015, 17, 244-256.

19

Albanese, A.; Tang, P. S.; Chan, W. C. W. The effect of nanoparticle size, shape, and surface chemistry on biological systems. Annu. Rev. Biomed. Eng. 2012, 14, 1-16.

20

Blanco, E.; Shen, H. F.; Ferrari, M. Principles of nanoparticle design for overcoming biological barriers to drug delivery. Nat. Biotechnol. 2015, 33, 941-951.

21

Wang, H. X.; Zuo, Z. Q.; Du, J. Z.; Wang, Y. C.; Sun, R.; Cao, Z. T.; Ye, X. D.; Wang, J. L.; Leong, K. W.; Wang, J. Surface charge critically affects tumor penetration and therapeutic efficacy of cancer nanomedicines. Nano Today 2016, 11, 133-144.

22

Barteau, B.; Chèvre, R.; Letrou-Bonneval, E.; Labas, R.; Lambert, O.; Pitard, B. Physicochemical parameters of non-viral vectors that govern transfection efficiency. Curr. Gene Ther. 2008, 8, 313-323.

23

Zhu, K. J.; Lin, X. Z.; Yang, S. L. Preparation, characterization, and properties of polylactide (PLA)-poly(ethylene glycol)(PEG) copolymers: A potential drug carrier. J. Appl. Polym. Sci. 1990, 39, 1-9.

24

Li, H. J.; Wang, H. X.; Sun, C. Y.; Du, J. Z.; Wang, J. Shell-detachable nanoparticles based on a light-responsive amphiphile for enhanced siRNA delivery. RSC Adv. 2014, 4, 1961-1964.

25

Yang, X. Z.; Dou, S.; Sun, T. M.; Mao, C. Q.; Wang, H. X.; Wang, J. Systemic delivery of siRNA with cationic lipid assisted PEG-PLA nanoparticles for cancer therapy. J. Control. Release 2011, 156, 203-211.

26

Wang, X. Y.; Chen, Y. H.; Dahmani, F. Z.; Yin, L. F.; Zhou, J. P.; Yao, J. Amphiphilic carboxymethyl chitosan- quercetin conjugate with P-gp inhibitory properties for oral delivery of paclitaxel. Biomaterials 2014, 35, 7654-7665.

27

Erben, U.; Loddenkemper, C.; Doerfel, K.; Spieckermann, S.; Haller, D.; Heimesaat, M. M.; Zeitz, M.; Siegmund, B.; Kühl, A. A. A guide to histomorphological evaluation of intestinal inflammation in mouse models. Int. J. Clin. Exp. Pathol. 2014, 7, 4557-4576.

28

Walczak, A. P.; Hendriksen, P. J.; Woutersen, R. A.; van der Zande, M.; Undas, A. K.; Helsdingen, R.; van den Berg, H. H.; Rietjens, I. M.; Bouwmeester, H. Bioavailability and biodistribution of differently charged polystyrene nanoparticles upon oral exposure in rats. J. Nanopart. Res. 2015, 17, 231.

29

Fang, N.; Wang, J.; Mao, H. Q.; Leong, K. W.; Chan, V. BHEM-Chol/DOPE liposome induced perturbation of phospholipid bilayer. Colloids Surf. B: Biointerfaces 2003, 29, 233-245.

30

Liu, Y.; Zhu, Y. H.; Mao, C. Q.; Dou, S.; Shen, S.; Tan, Z. B.; Wang, J. Triple negative breast cancer therapy with CDK1 siRNA delivered by cationic lipid assisted PEG-PLA nanoparticles. J. Control. Release 2014, 192, 114-121.

31

Iqbal, M.; Zafar, N.; Fessi, H.; Elaissari, A. Double emulsion solvent evaporation techniques used for drug encapsulation. Int. J. Pharm. 2015, 496, 173-190.

32

Roy, R.; Hohng, S.; Ha, T. A practical guide to single- molecule FRET. Nat. Methods 2008, 5, 507-516.

33

Tobıo, M.; Sánchez, A.; Vila, A.; Soriano, I.; Evora, C.; Vila-Jato, J. L.; Alonso, M. J. The role of PEG on the stability in digestive fluids and in vivo fate of PEG-PLA nanoparticles following oral administration. Colloids Surf. B: Biointerfaces 2000, 18, 315-323.

34

Lai, S. K.; Wang, Y. Y.; Hanes, J. Mucus-penetrating nanoparticles for drug and gene delivery to mucosal tissues. Adv. Drug Deliv. Rev. 2009, 61, 158-171.

35

Ensign, L. M.; Cone, R.; Hanes, J. Oral drug delivery with polymeric nanoparticles: The gastrointestinal mucus barriers. Adv. Drug Deliv. Rev. 2012, 64, 557-570.

36

Xu, Q. G.; Ensign, L. M.; Boylan, N. J.; Schön, A.; Gong, X. Q.; Yang, J. C.; Lamb, N. W.; Cai, S. T.; Yu, T.; Freire, E. Impact of surface polyethylene glycol (PEG) density on biodegradable nanoparticle transport in mucus ex vivo and distribution in vivo. ACS Nano 2015, 9, 9217-9227.

37

Zhang, J.; Tang, C.; Yin, C. H. Galactosylated trimethyl chitosan-cysteine nanoparticles loaded with Map4k4 siRNA for targeting activated macrophages. Biomaterials 2013, 34, 3667-3677.

38

Zuo, L. S.; Huang, Z.; Dong, L.; Xu, L. Q.; Zhu, Y. A.; Zeng, K.; Zhang, C. Y.; Chen, J. N.; Zhang, J. F. Targeting delivery of anti-TNFα oligonucleotide into activated colonic macrophages protects against experimental colitis. Gut 2010, 59, 470-479.

39

Lamprecht, A. Nanomedicines in gastroenterology and hepatology. Nat. Rev. Gastroenterol. Hepatol. 2015, 12, 195-204.

40

Jubeh, T. T.; Barenholz, Y.; Rubinstein, A. Differential adhesion of normal and inflamed rat colonic mucosa by charged liposomes. Pharm. Res. 2004, 21, 447-453.

41

Tirosh, B.; Khatib, N.; Barenholz, Y.; Nissan, A.; Rubinstein, A. Transferrin as a luminal target for negatively charged liposomes in the inflamed colonic mucosa. Mol. Pharmaceutics 2009, 6, 1083-1091.

42

Zhang, S. F.; Ermann, J.; Succi, M. D.; Zhou, A.; Hamilton, M. J.; Cao, B.; Korzenik, J. R.; Glickman, J. N.; Vemula, P. K.; Glimcher, L. H. et al. An inflammation-targeting hydrogel for local drug delivery in inflammatory bowel disease. Sci. Transl. Med. 2015, 7, 300ra128.

Nano Research
Pages 2872-2884
Cite this article:
Iqbal S, Du X, Wang J, et al. Surface charge tunable nanoparticles for TNF-α siRNA oral delivery for treating ulcerative colitis. Nano Research, 2018, 11(5): 2872-2884. https://doi.org/10.1007/s12274-017-1918-3

748

Views

25

Crossref

N/A

Web of Science

28

Scopus

0

CSCD

Altmetrics

Received: 15 September 2017
Revised: 03 November 2017
Accepted: 10 November 2017
Published: 12 May 2018
© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2017
Return