AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Bio-inspired design of hierarchical FeP nanostructure arrays for the hydrogen evolution reaction

Ya Yan1,5,§Xue Rong Shi3,4,§Mao Miao2Ting He2Ze Hua Dong2Ke Zhan1Jun He Yang1Bin Zhao1,5( )Bao Yu Xia2,6( )
School of Materials Science and EngineeringUniversity of Shanghai for Science and Technology516 Jungong RoadYangpu DistrictShanghai200093China
Key laboratory of Material Chemistry for Energy Conversion and Storage (Ministry of Education)Hubei Key Laboratory of Material Chemistry and Service FailureSchool of Chemistry and Chemical EngineeringWuhan National Laboratory for OptoelectronicsHuazhong University of Science and Technology (HUST)1037 Luoyu RoadWuhan430074China
College of Materials EngineeringShanghai University of Engineering ScienceShanghai201620China
Institute of Physical ChemistryUniversity of Innsbruck, Innrain 80-82, Innsbruck, A-6020Austria
Shanghai Innovation Institute for MaterialsShanghai200444China
Shenzhen Institute of Huazhong University of Science and TechnologyShenzhen518000China

§Ya Yan and XueRong Shi contributed equally to this work.

Show Author Information

Graphical Abstract

Abstract

Hierarchical FeP nanoarray films composed of FeP nanopetals were successfully synthesized via a bio-inspired hydrothermal route followed by phosphorization. Glycerol, as a crystal growth modifier, plays a significant role in controlling the morphology and structure of the FeO(OH) precursor during the biomineralization process, while the following transfer and pseudomorphic transformation of the FeO(OH) film successfully give rise to the FeP array film. The as-prepared FeP film electrodes exhibit excellent hydrogen evolution reaction (HER) performance over a wide pH range. Theoretical calculations reveal that the mixed P/Fe termination in the FeP film is responsible for the high catalytic activity of the nanostructured electrodes. This new insight will promote further explorations of efficient metal phosphoride-based catalysts for the HER. More importantly, this study bridges the gap between biological and inorganic self-assembling nanosystems and may open up a new avenue for the preparation of functional nanostructures with application in energy devices.

Electronic Supplementary Material

Download File(s)
12274_2017_1919_MOESM1_ESM.pdf (7.9 MB)

References

1

Dunn, S. Hydrogen futures: Toward a sustainable energy system. Int. J. Hydrogen Energy 2002, 27, 235–264.

2

Jiao, Y. ; Zheng, Y. ; Jaroniec, M. ; Qiao, S. Z. Design of electrocatalysts for oxygen- and hydrogen-involving energy conversion reactions. Chem. Soc. Rev. 2015, 44, 2060–2086.

3

Zou, X. X. ; Zhang, Y. Noble metal-free hydrogen evolution catalysts for water splitting. Chem. Soc. Rev. 2015, 44, 5148–5180.

4

Jiao, L. ; Zhou, Y. X. ; Jiang, H. L. Metal-organic frameworkbased CoP/reduced graphene oxide: High-performance bifunctional electrocatalyst for overall water splitting. Chem. Sci. 2016, 7, 1690–1695.

5

You, B. ; Jiang, N. ; Liu, X. ; Sun, Y. J. Simultaneous H2 generation and biomass upgrading in water by an efficient noble-metal-free bifunctional electrocatalyst. Angew. Chem., Int. Ed. 2016, 55, 9913–9917.

6

You, B. ; Liu, X. ; Jiang, N. ; Sun, Y. J. A general strategy for decoupled hydrogen production from water splitting by integrating oxidative biomass valorization. J. Am. Chem. Soc 2016, 138, 13639–13646.

7

Pu, Z. H. ; Wei, S. Y. ; Chen, Z. B. ; Mu, S. C. Flexible molybdenum phosphide nanosheet array electrodes for hydrogen evolution reaction in a wide ph range. Appl. Catal. B 2016, 196, 193–198.

8

Miao, M. ; Pan, J. ; He, T. ; Yan, Y. ; Xia, B. Y. ; Wang, X. Molybdenum carbide-based electrocatalysts for hydrogen evolution reaction. Chem. -Eur. J. 2017, 23, 10947–10961.

9

Li, D. Q. ; Liao, Q. Y. ; Ren, B. W. ; Jin, Q. Y. ; Cui, H. ; Wang, C. X. A 3D-composite structure of FEP nanorods supported by vertically aligned graphene for the highperformance hydrogen evolution reaction. J. Mater. Chem. A 2017, 5, 11301–11308.

10

Ren, B. W. ; Li, D. Q. ; Jin, Q. Y. ; Cui, H. ; Wang, C. X. Novel porous tungsten carbide hybrid nanowires on carbon cloth for high-performance hydrogen evolution. J. Mater. Chem. A 2017, 5, 13196–13203.

11

Wang, H. ; Min, S. X. ; Wang, Q. ; Li, D. B. ; Casillas, G. ; Ma, C. ; Li, Y. Y. ; Liu, Z. X. ; Li, L. J. ; Yuan, J. Y. et al. Nitrogen-doped nanoporous carbon membranes with Co/CoP janus-type nanocrystals as hydrogen evolution electrode in both acidic and alkaline environments. ACS Nano 2017, 11, 4358–4364.

12

Jiang, P. ; Liu, Q. ; Liang, Y. H. ; Tian, J. Q. ; Asiri, A. M. ; Sun, X. P. A cost-effective 3D hydrogen evolution cathode with high catalytic activity: FeP nanowire array as the active phase. Angew. Chem., Int. Ed. 2014, 53, 12855–12859.

13

Shi, Y. M. ; Zhang, B. Recent advances in transition metal phosphide nanomaterials: Synthesis and applications in hydrogen evolution reaction. Chem. Soc. Rev. 2016, 45, 1529–1541.

14

Liang, Y. H. ; Liu, Q. ; Asiri, A. M. ; Sun, X. P. ; Luo, Y. L. Self-supported FeP nanorod arrays: A cost-effective 3D hydrogen evolution cathode with high catalytic activity. ACS Catal. 2014, 4, 4065–4069.

15

Zhang, Z. ; Lu, B. P. ; Hao, J. H. ; Yang, W. S. ; Tang, J. L. FeP nanoparticles grown on graphene sheets as highly active non-precious-metal electrocatalysts for hydrogen evolution reaction. Chem. Commun. 2014, 50, 11554–11557.

16

Tian, J. Q. ; Liu, Q. ; Liang, Y. H. ; Xing, Z. C. ; Asiri, A. M. ; Sun, X. P. FeP nanoparticles film grown on carbon cloth: An ultrahighly active 3D hydrogen evolution cathode in both acidic and neutral solutions. ACS Appl. Mater. Interfaces 2014, 6, 20579–20584.

17

Lu, Z. Y. ; Zhu, W. ; Yu, X. Y. ; Zhang, H. C. ; Li, Y. J. ; Sun, X. M. ; Wang, X. W. ; Wang, H. ; Wang, J. M. ; Luo, J. et al. Ultrahigh hydrogen evolution performance of under-water "superaerophobic" MoS2 nanostructured electrodes. Adv. Mater. 2014, 26, 2683–2687.

18

Lu, Z. Y. ; Li, Y. J. ; Lei, X. D. ; Liu, J. F. ; Sun, X. M. Nanoarray based "superaerophobic" surfaces for gas evolution reaction electrodes. Mater. Horiz. 2015, 2, 294–298.

19

Meldrum, F. C. ; Cölfen, H. Controlling mineral morphologies and structures in biological and synthetic systems. Chem. Rev. 2008, 108, 4332–4432.

20

Wang, B. ; Chen, J. S. ; Lou, X. W. The comparative lithium storage properties of urchin-like hematite spheres: Hollow vs. solid. J. Mater. Chem. A 2012, 22, 9466–9468.

21

Wei, Z. H. ; Xing, R. G. ; Zhang, X. ; Liu, S. ; Yu, H. H. ; Li, P. C. Facile template-free fabrication of hollow nestlike α-Fe2O3 nanostructures for water treatment. ACS Appl. Mater. Interfaces 2013, 5, 598–604.

22

Mayer, G. Rigid biological systems as models for synthetic composites. Science 2005, 310, 1144–1147.

23

Oaki, Y. ; Kajiyama, S. ; Nishimura, T. ; Kato, T. Selective synthesis and thin-film formation of α-cobalt hydroxide through an approach inspired by biomineralization. J. Mater. Chem. 2008, 18, 4140–4142.

24

Uchiyama, H. ; Hosono, E. ; Zhou, H. S. ; Imai, H. Three-dimensional architectures of spinel-type LiMn2O4 prepared from biomimetic porous carbonates and their application to a cathode for lithium-ion batteries. J. Mater. Chem. 2009, 19, 4012–4016.

25

Kokubu, T. ; Oaki, Y. ; Uchiyama, H. ; Hosono, E. ; Zhou, H. S. ; Imai, H. Biomimetic synthesis of metal ion-doped hierarchical crystals using a gel matrix: Formation of cobalt-doped LiMn2O4 with improved electrochemical properties through a cobalt-doped MnCo3 precursor. Chem. Asian J. 2010, 5, 792–798.

26

Liu, L. ; Yang, L. Q. ; Liang, H. W. ; Cong, H. P. ; Jiang, J. ; Yu, S. H. Bio-inspired fabrication of hierarchical feooh nanostructure array films at the air–water interface, their hydrophobicity and application for water treatment. ACS Nano 2013, 7, 1368–1378.

27

Guo, X. H. ; Yu, S. H. ; Cai, G. B. Crystallization in a mixture of solvents by using a crystal modifier: Morphology control in the synthesis of highly monodisperse CaCo3 microspheres. Angew. Chem., Int. Ed. 2006, 118, 4081–4085.

28

Chen, S. F. ; Zhu, J. H. ; Jiang, J. ; Cai, G. B. ; Yu, S. H. Polymer-controlled crystallization of unique mineral superstructures. Adv. Mater. 2010, 22, 540–545.

29

McCusker, L. B. Product characterization by X-ray powder diffraction. Microporous Mesoporous Mater. 1998, 22, 527–529.

30

Li, J. T. ; Zhao, W. ; Huang, F. Q. ; Manivannan, A. ; Wu, N. Q. Single-crystalline Ni(OH)2 and NiO nanoplatelet arrays as supercapacitor electrodes. Nanoscale 2011, 3, 5103–5109.

31

Amano, F. ; Li, D. ; Ohtani, B. Fabrication and photoelectrochemical property of tungsten(Ⅵ) oxide films with a flake-wall structure. Chem. Commun. 2010, 46, 2769–2771.

32

Guo, X. ; Zhang, F. ; Xu, S. ; Evans, D. G. ; Duan, X. Preparation of layered double hydroxide films with different orientations on the opposite sides of a glass substrate by in situ hydrothermal crystallization. Chem. Commun. 2009, 6836–6838.

33

Paseka, I. ; Velicka, J. Hydrogen evolution and hydrogen sorption on amorphous smooth MeP(X) (Me = Ni, Co and FeNi) electrodes. Electrochim. Acta 1997, 42, 237–242.

34

Paseka, I. Influence of hydrogen absorption in amorphous Ni–P electrodes on double layer capacitance and charge transfer coefficient of hydrogen evolution reaction. Electrochim. Acta 1999, 44, 4551–4558.

35

Abdel-Samad, H. ; Watson, P. R. An XPS study of the adsorption of chromate on goethite (α-FeOOH). Appl. Surf. Sci. 1997, 108, 371–377.

36

Qian, C. ; Kim, F. ; Ma, L. ; Tsui, F. ; Yang, P. D. ; Liu, J. Solution-phase synthesis of single-crystalline iron phosphide nanorods/nanowires. J. Am. Chem. Soc. 2004, 126, 1195–1198.

37

Yan, Y. ; Xia, B. Y. ; Ge, X. M. ; Liu, Z. L. ; Fisher, A. ; Wang, X. A flexible electrode based on iron phosphide nanotubes for overall water splitting. Chem. -Eur. J. 2015, 21, 18062–18067.

38

Faber, M. S. ; Dziedzic, R. ; Lukowski, M. A. ; Kaiser, N. S. ; Ding, Q. ; Jin, S. High-performance electrocatalysis using metallic cobalt pyrite (CoS2) micro- and nanostructures. J. Am. Chem. Soc. 2014, 136, 10053–10061.

39

Oyama, S. T. ; Gott, T. ; Zhao, H. Y. ; Lee, Y. K. Transition metal phosphide hydroprocessing catalysts: A review. Catal. Today 2009, 143, 94–107.

40

Masa, J. ; Weide, P. ; Peeters, D. ; Sinev, I. ; Xia, W. ; Sun, Z. Y. ; Somsen, C. ; Muhler, M. ; Schuhmann, W. Amorphous cobalt boride (Co2B) as a highly efficient nonprecious catalyst for electrochemical water splitting: Oxygen and hydrogen evolution. Adv. Energy Mater. 2016, 6, 1502313.

41

Laursen, A. B. ; Patraju, K. R. ; Whitaker, M. J. ; Retuerto, M. ; Sarkar, T. ; Yao, N. ; Ramanujachary, K. V. ; Greenblatt, M. ; Dismukes, G. C. Nanocrystalline Ni5P4: A hydrogen evolution electrocatalyst of exceptional efficiency in both alkaline and acidic media. Energy Environ. Sci. 2015, 8, 1027–1034.

42

Lasia, A. Hydrogen Evolution Reaction. Handbook of Fuel Cells 2010.

43

Xiao, P. ; Sk, M. A. ; Thia, L. ; Ge, X. M. ; Lim, R. J. ; Wang, J. Y. ; Lim, K. H. ; Wang, X. Molybdenum phosphide as an efficient electrocatalyst for the hydrogen evolution reaction. Energy Environ. Sci. 2014, 7, 2624–2629.

44

Popczun, E. J. ; Read, C. G. ; Roske, C. W. ; Lewis, N. S. ; Schaak, R. E. Highly active electrocatalysis of the hydrogen evolution reaction by cobalt phosphide nanoparticles. Angew. Chem., Int. Ed. 2014, 126, 5531–5534.

45

Popczun, E. J. ; McKone, J. R. ; Read, C. G. ; Biacchi, A. J. ; Wiltrout, A. M. ; Lewis, N. S. ; Schaak, R. E. Nanostructured nickel phosphide as an electrocatalyst for the hydrogen evolution reaction. J. Am. Chem. Soc. 2013, 135, 9267–9270.

46

Pu, Z. H. ; Liu, Q. ; Tang, C. ; Asiri, A. M. ; Sun, X. P. Ni2P nanoparticle films supported on a Ti plate as an efficient hydrogen evolution cathode. Nanoscale 2014, 6, 11031–11034.

47

Xie, J. F. ; Zhang, H. ; Li, S. ; Wang, R. X. ; Sun, X. ; Zhou, M. ; Zhou, J. F. ; Lou, X. W. ; Xie, Y. Defect-rich MoS2 ultrathin nanosheets with additional active edge sites for enhanced electrocatalytic hydrogen evolution. Adv. Mater. 2013, 25, 5807–5813.

48

Durst, J. ; Siebel, A. ; Simon, C. ; Hasché, F. ; Herranz, J. ; Gasteiger, H. A. New insights into the electrochemical hydrogen oxidation and evolution reaction mechanism. Energy Environ. Sci. 2014, 7, 2255–2260.

49

Hinnemann, B. ; Moses, P. G. ; Bonde, J. ; Jørgensen, K. P. ; Nielsen, J. H. ; Horch, S. ; Chorkendorff, I. ; Nørskov, J. K. Biomimetic hydrogen evolution: MoS2 nanoparticles as catalyst for hydrogen evolution. J. Am. Chem. Soc. 2005, 127, 5308–5309.

50

Hanh, T. T. T. ; Takimoto, Y. ; Sugino, O. First-principles thermodynamic description of hydrogen electroadsorption on the Pt(111) surface. Surf. Sci. 2014, 625, 104–111.

Nano Research
Pages 3537-3547
Cite this article:
Yan Y, Shi XR, Miao M, et al. Bio-inspired design of hierarchical FeP nanostructure arrays for the hydrogen evolution reaction. Nano Research, 2018, 11(7): 3537-3547. https://doi.org/10.1007/s12274-017-1919-2

1018

Views

80

Crossref

N/A

Web of Science

82

Scopus

8

CSCD

Altmetrics

Received: 20 September 2017
Revised: 06 November 2017
Accepted: 11 November 2017
Published: 02 August 2018
© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2017
Return