AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

A sustainable aqueous Zn-I2 battery

Chong Bai1,§Fengshi Cai2,§Lingchang Wang2Shengqi Guo2Xizheng Liu2( )Zhihao Yuan1,2( )
School of Materials Science and EngineeringTianjin UniversityTianjin300072China
School of Materials Science and EngineeringTianjin Key Lab for Photoelectric Materials & DevicesTianjin University of TechnologyTianjin300384China

§Chong Bai and Fengshi Cai contributed equally to this work.

Show Author Information

Graphical Abstract

Abstract

Rechargeable metal-iodine batteries are an emerging attractive electrochemical energy storage technology that combines metallic anodes with halogen cathodes. Such batteries using aqueous electrolytes represent a viable solution for the safety and cost issues associated with organic electrolytes. A hybrid-electrolyte battery architecture has been adopted in a lithium-iodine battery using a solid ceramic membrane that protects the metallic anode from contacting the aqueous electrolyte. Here we demonstrate an eco-friendly, low-cost zinc-iodine battery with an aqueous electrolyte, wherein active I2 is confined in a nanoporous carbon cloth substrate. The electrochemical reaction is confined in the nanopores as a single conversion reaction, thus avoiding the production of I3- intermediates. The cathode architecture fully utilizes the active I2, showing a capacity of 255 mAh·g-1 and low capacity cycling fading. The battery provides an energy density of ~ 151 Wh·kg-1 and exhibits an ultrastable cycle life of more than 1, 500 cycles.

Electronic Supplementary Material

Download File(s)
12274_2017_1920_MOESM1_ESM.pdf (1.8 MB)

References

1

Dunn, B. ; Kamath, H. ; Tarascon, J. -M. Electrical energy storage for the grid: A battery of choices. Science 2011, 334, 928-935.

2

Sun, Y. M. ; Liu, N. ; Cui, Y. Promises and challenges of nanomaterials for lithium-based rechargeable batteries. Nature Energy 2016, 1, 16071.

3

Feng, N. N. ; He, P. ; Zhou, H. S. Critical challenges in rechargeable aprotic Li-O2 batteries. Adv. Energy Mater. 2016, 6, 1502303.

4

Hu, Z. ; Liu, Q. N. ; Chou, S. -L. ; Dou, S. -X. Advances and challenges in metal sulfides/selenides for next-generation rechargeable sodium-ion batteries. Adv. Mater. 2017. DOI: 10.1002/adma.201700606.

5

Park, M. ; Ryu, J. ; Wang, W. ; Cho, J. Material design and engineering of next-generation flow-battery technologies. Nat. Rev. Mater. 2016, 2, 16080.

6

Zhao, Y. ; Ding, Y. ; Li, Y. T. ; Peng, L. L. ; Byon, H. R. ; Goodenough, J. B. ; Yu, G. H. A chemistry and material perspective on lithium redox flow batteries towards highdensity electrical energy storage. Chem. Soc. Rev. 2015, 44, 7968-7996.

7

Broadhead, J. A new lithium-non-lithium non-aqueous secondary battery. In Eighth International Power Sources Symposium, Internat. Power Sources Symposium Committee, Croydon, Surrey, UK, 1972; pp 287-298.

8

Wang, Y. L. ; Sun, Q. L. ; Zhao, Q. Q. ; Cao, J. S. ; Ye, S. H. Rechargeable lithium/iodine battery with superior high-rate capability by using iodine-carbon composite as cathode. Energy Environ. Sci. 2011, 4, 3947-3950.

9

Zhao, Q. ; Lu, Y. Y. ; Zhu, Z. Q. ; Tao, Z. L. ; Chen, J. Rechargeable lithium-iodine batteries with iodine/nanoporous carbon cathode. Nano Lett. 2015, 15, 5982-5987.

10

Gong, D. C. ; Wang, B. ; Zhu, J. Y. ; Podila, R. ; Rao, A. M. ; Yu, X. Z. ; Xu, Z. ; Lu, B. N. An iodine quantum dots based rechargeable sodium-iodine battery. Adv. Energy Mater. 2017, 7, 1601885.

11

Tian, H. J. ; Gao, T. ; Li, X. G. ; Wang, X. W. ; Luo, C. ; Fan, X. L. ; Yang, C. Y. ; Suo, L. M. ; Ma, Z. H. ; Han, W. Q. et al. High power rechargeable magnesium/iodine battery chemistry. Nat. Commun. 2017, 8, 14083.

12

Tian, H. J. ; Zhang, S. L. ; Meng, Z. ; He, W. ; Han, W. -Q. Rechargeable aluminum/iodine battery redox chemistry in ionic liquid electrolyte. ACS Energy Lett. 2017, 2, 1170-1176.

13

Zhao, Y. ; Wang, L. N. ; Byon, H. R. High-performance rechargeable lithium-iodine batteries using triiodide/iodide redox couples in an aqueous cathode. Nat. Commun. 2013, 4, 1896.

14

Zhao, Y. ; Byon, H. R. High-performance lithium-iodine flow battery. Adv. Energy Mater. 2013, 3, 1630-1635.

15

Yamamoto, T. ; Hishinuma, M. ; Yamamoto, A. Zn|ZnI2| iodine secondary battery using iodine-nylon-6 adduct as positive electrode, and its charge-discharge performance. Inorg. Chim. Acta 1984, 86, L47-L49.

16

Li, B. ; Nie, Z. M. ; Vijayakumar, M. ; Li, G. S. ; Liu, J. ; Sprenkle, V. ; Wang, W. Ambipolar zinc-polyiodide electrolyte for a high-energy density aqueous redox flow battery. Nat. Commun. 2015, 6, 6303.

17

Lee, J. ; Srimuk, P. ; Fleischmann, S. ; Ridder, A. ; Zeiger, M. ; Presser, V. Nanoconfinement of redox reactions enables rapid zinc iodide energy storage with high efficiency. J. Mater. Chem. A 2017, 5, 12520-12527.

18

Puri, B. R. ; Bansal, R. C. Iodine adsorption method for measuring surface area of carbon blacks. Carbon 1965, 3, 227-230.

19

Moser, J. R. Solid state lithium-iodine primary battery. U. S. Patent 3, 660, 163, May 2, 1972.

20

See, K. A. ; Gerbec, J. A. ; Jun, Y. -S. ; Wudl, F. ; Stucky, G. D. ; Seshadri, R. A high capacity calcium primary cell based on the Ca-S system. Adv. Energy Mater. 2013, 3, 1056-1061.

21

Kiefer, W. ; Bernstein, H. J. The UV-laser excited resonance Raman spectrum of the I3 - ion. Chem. Phys. Lett. 1972, 16, 5-9.

22

Pang, Q. ; Liang, X. ; Kwok, C. Y. ; Nazar, L. F. Advances in lithium-sulfur batteries based on multifunctional cathodes and electrolytes. Nat. Energy 2016, 1, 16132.

23

Aurbach, D. ; Pollak, E. ; Elazari, R. ; Salitra, G. ; Kelley, C. S. ; Affinito, J. On the surface chemical aspects of very high energy density, rechargeable Li-sulfur batteries. J. Electrochem. Soc. 2009, 156, A694-A702.

24

Xu, J. T. ; Ma, J. M. ; Fan, Q. H. ; Guo, S. J. ; Dou, S. X. Recent progress in the design of advanced cathode materials and battery models for high-performance lithium-X (X = O2, S, Se, Te, I2, Br2) batteries. Adv. Mater. 2017, 29, 1606454.

25

Reddy, T. B. Linden's Handbook of Batteries; 4th ed. The McGraw-Hill Companies, Inc. : New York, 2010; pp15.10-15.11.

26

Dong, X. L. ; Chen, L. ; Su, X. L. ; Wang, Y. G. ; Xia, Y. Y. Flexible aqueous lithium-ion battery with high safety and large volumetric energy density. Angew. Chem., Int. Ed. 2016, 55, 7474-7477.

27

Suo, L. M. ; Borodin, O. ; Sun, W. ; Fan, X. L. ; Yang, C. Y. ; Wang, F. ; Gao, T. ; Ma, Z. H. ; Schroeder, M. ; von Cresce, A. et al. Advanced high-voltage aqueous lithium-ion battery enabled by "water-in-Bisalt" electrolyte. Angew. Chem., Int. Ed. 2016, 55, 7136-7141.

28

Wang, F. ; Suo, L. M. ; Liang, Y. J. ; Yang, C. Y. ; Han, F. D. ; Gao, T. ; Sun, W. ; Wang, C. S. Spinel LiNi0.5Mn1.5O4 cathode for high-energy aqueous lithium-ion batteries. Adv. Energy Mater. 2017, 7, 1600922.

Nano Research
Pages 3548-3554
Cite this article:
Bai C, Cai F, Wang L, et al. A sustainable aqueous Zn-I2 battery. Nano Research, 2018, 11(7): 3548-3554. https://doi.org/10.1007/s12274-017-1920-9

1097

Views

144

Crossref

N/A

Web of Science

134

Scopus

12

CSCD

Altmetrics

Received: 20 September 2017
Revised: 01 November 2017
Accepted: 11 November 2017
Published: 02 August 2018
© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2017
Return