Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
Mesoporous Mn-Sn bimetallic oxide (BO) nanocubes with sizes of 15-30 nm show outstanding stable and reversible capacities in lithium ion batteries (LIBs), reaching 856.8 mAh·g-1 after 400 cycles at 500 mA·g-1 and 506 mAh·g-1 after 850 cycles at 1, 000 mA·g-1. The preliminary investigation of the reaction mechanism, based on X-ray diffraction measurements, indicates the occurrence of both conversion and alloying-dealloying reactions in the Mn-Sn bimetallic oxide electrode. Moreover, Mn-Sn BO//LiCoO2 Li-ion full cells were successfully assembled for the first time, and found to deliver a relatively high energy density of 176.25 Wh·kg-1 at 16.35 W·kg-1 (based on the total weight of anode and cathode materials). The superior long-term stability of these materials might be attributed to their nanoscale size and unique mesoporous nanocubic structure, which provide short Li+ diffusion pathways and a high contact area between electrolyte and active material. In addition, the Mn-Sn BOs could be used as advanced sulfur hosts for lithium-sulfur batteries, owing to their adequate mesoporous structure and relatively strong chemisorption of lithium polysulfide. The present results thus highlight the promising potential of mesoporous Mn-Sn bimetallic oxides for application in Li-ion and Li-S batteries.
Sun, B. ; Chen, S. Q. ; Liu, H. ; Wang, G. X. Mesoporous carbon nanocube architecture for high-performance lithiumoxygen batteries. Adv. Funct. Mater. 2015, 25, 4436-4444.
Deori, K. ; Gupta, D. ; Saha, B. ; Sasanka, D. Design of 3-dimensionally self-assembled CeO2 nanocube as a breakthrough catalyst for efficient alkylarene oxidation in water. ACS Catal. 2014, 4, 3169-3179.
Lü, Y. Y. ; Zhan, W. W. ; He, Y. ; Wang, Y. T. ; Kong, X. J. ; Kuang, Q. ; Xie, Z. X. ; Zheng, L. S. MOF-templated synthesis of porous Co3O4 concave nanocubes with high specific surface area and their gas sensing properties. ACS Appl. Mater. Interfaces 2014, 6, 4186-4195.
Li, G. D. ; Yu, H. X. ; Xu, L. Q. ; Ma, Q. ; Chen, C. ; Hao, Q. ; Qian, Y. T. General synthesis of carbon nanocages and their adsorption of toxic compounds from cigarette smoke. Nanoscale 2011, 3, 3251-3257.
Yan, S. C. ; Wang, J. J. ; Gao, H. L. ; Wang, N. Y. ; He, Y. ; Li, Z. S. ; Zhou, Y. ; Zhou, Z. G. An ion-exchange phase transformation to ZnGa2O4 nanocube towards efficient solar fuel synthesis. Adv. Funct. Mater. 2013, 23, 758-763.
Ju, Z. C. ; Zhang, E. ; Zhao, Y. L. ; Xing, Z. ; Zhuang, Q. C. ; Qiang, Y. H. ; Qian, Y. T. One-pot hydrothermal synthesis of FeMoO4 nan℃ubes as an anode material for lithium-ion batteries with excellent electrochemical performance. Small 2015, 11, 4753-4761.
Xu, J. M. ; Wu, J. S. ; Luo, L. L. ; Chen, X. Q. ; Qin, H. B. ; Dravid, V. ; Mi, S. B. ; Jia, C. L. Co3O4 nanocubes homogeneously assembled on few-layer graphene for high energy density lithium-ion batteries. J. Power Sources 2015, 274, 816-822.
Kang, W. P. ; Tang, Y. B. ; Li, W. Y. ; Li, Z. P. ; Yang, X. ; Xu, J. ; Lee, C. S. Porous CuCo2O4 nanocubes wrapped by reduced graphene oxide as high-performance lithium-ion battery anodes. Nanoscale 2014, 6, 6551-6556.
Yan, N. ; Wang, F. ; Zhong, H. ; Li, Y. ; Wang, Y. ; Hu, L. ; Chen, Q. W. Hollow porous SiO2 nanocubes towards highperformance anodes for lithium-ion batteries. Sci. Rep. 2013, 3, 1568-1573.
Wang, Z. Y. ; Luan, D. Y. ; Boey, F. Y. C. ; Lou, X. W. Fast formation of SnO2 nanoboxes with enhanced lithium storage capability. J. Am. Chem. Soc. 2011, 133, 4738-4741.
Idota, Y. ; Kubota, T. ; Matsufuji, A. ; Maekawa, Y. ; Miyasaka, T. Tin-based amorphous oxide: A high-capacity lithiumion-storage material. Science 1997, 276, 1395-1397.
He, Y. Y. ; Li, A. H. ; Dong, C. F. ; Li, C. C. ; Xu, L. Q. Mesoporous tin-based oxide nanospheres/reduced graphene composites as advanced anodes for lithium-ion half/full cells and sodium-ion batteries. Chem. —Eur. J. 2017, 23, 13724-13733.
Park, G. D. ; Lee, J. K. ; Kang, Y. C. Synthesis of uniquely structured SnO2 hollow nanoplates and their electrochemical properties for Li-ion storage. Adv. Funct. Mater. 2017, 27, 1603399.
Zhang, R. R. ; He, Y. Y. ; Xu, L. Q. Controllable synthesis of hierarchical ZnSn(OH)6 and Zn2SnO4 hollow nanospheres and their applications as anodes for lithium ion batteries. J. Mater. Chem. A 2014, 2, 17979-17985.
Zhang, J. J. ; Liang, J. W. ; Zhu, Y. C. ; Wei, D. H. ; Fan, L. ; Qian, Y. T. Synthesis of Co2SnO4 hollow cubes encapsulated in graphene as high capacity anode materials for lithium-ion batteries. J. Mater. Chem. A 2014, 2, 2728-2734.
Lei, S. J. ; Tang, K. B. ; Chen, C. H. ; Jin, Y. ; Zhou, L. Preparation of Mn2SnO4 nanoparticles as the anode material for lithium secondary battery. Mater. Res. Bull. 2009, 44, 393-397.
Han, F. ; Li, W. C. ; Lei, C. ; He, B. ; Oshida, K. ; Lu, A. H. Selective formation of carbon-coated, metastable amorphous ZnSnO3 nanocubes containing mesopores for use as highcapacity lithium-ion battery. Small 2014, 10, 2637-2644.
Wang, Z. Y. ; Wang, Z. C. ; Liu, W. T. ; Xiao, W. X. ; Lou, X. W. Amorphous CoSnO3@C nanoboxes with superior lithium storage capability. Energy Environ. Sci. 2013, 6, 87-91.
Yuan, Z. Y. ; Huang, F. ; Sun, J. T. ; Zhou, Y. H. Synthesis and characterization of amorphous nanosized MnSnO3 as a high capacity anode material for lithium ion batteries. J. Mater. Sci. Lett. 2003, 22, 143-144.
Zhang, R. X. ; Fang, G. Q. ; Liu, W. W. ; Xia, B. B. ; Sun, H. D. ; Zheng, J. W. ; Li, D. C. Preparation and electrochemical properties of core-shell carbon coated Mn-Sn complex metal oxide as anode materials for lithium-ion batteries. Appl. Surf. Sci. 2014, 292, 682-687.
Fan, L. ; Zhu, Y. C. ; Zhang, J. J. ; Liang, J. W. ; Wang, L. L. ; Wei, D. H. ; Li, X. N. ; Qian, Y. T. Uniformly dispersed Sn-MnO@C nanocomposite derived from MnSn(OH)6 precursor as anode material for lithium-ion batteries. Electrochim. Acta 2014, 121, 21-26.
Liu, P. ; Hao, Q. L. ; Xia, X. F. ; Wu, L. ; Xia, H. ; Chen, Z. Y. ; Wang, X. Hollow amorphous MnSnO3 nanohybrid with nitrogen-doped graphene for high-performance lithium storage. Electrochim. Acta 2016, 214, 1-10.
Liang, K. ; Cheang, T. K. ; Wen, T. ; Xie, X. ; Zhou, X. ; Zhao, Z. W. ; Shen, C. C. ; Jiang, N. ; Xu, A. W. Facile preparation of porous Mn2SnO4/Sn/C composite cubes as high performance anode material for lithium-ion batteries. J. Phys. Chem. C 2016, 120, 3669-3676.
Liu, X. ; Huang, J. Q. ; Zhang, Q. ; Mai, L. Q. Nanostructured metal oxides and sulfides for lithium-sulfur batteries. Adv. Mater. 2017, 29, 1601759.
Zhang, L. P. ; Wang, Y. F. ; Gou, S. Q. ; Zeng, J. H. All inorganic frameworks of tin dioxide shell as cathode material for lithium sulfur batteries with improved cycle performance. J. Phys. Chem. C 2015, 119, 28721-28727.
Liu, J. ; Yuan, L. X. ; Yuan, K. ; Li, Z. ; Hao, Z. X. ; Xiang, J. W. ; Huang, Y. H. SnO2 as a high-efficiency polysulfide trap in lithium-sulfur batteries. Nanoscale 2016, 8, 13638-13645.
Cao, B. K. ; Li, D. ; Hou, B. ; Mo, Y. ; Yin, L. H. ; Chen, Y. Synthesis of double-shell SnO2@C hollow nanospheres as sulfur/sulfide cages for lithium-sulfur batteries. ACS Appl. Mater. Interfaces 2016, 8, 27795-27802.
Li, Z. ; Zhang, J. T. ; Lou, X. W. Hollow carbon nanofibers filled with MnO2 nanosheets as efficient sulfur hosts for lithium-sulfur batteries. Angew. Chem., Int. Ed. 2015, 54, 12886-12890.
Zhang, J. ; Shi, Y. ; Ding, Y. ; Zhang, W. K. ; Yu, G. H. In situ reactive synthesis of polypyrrole-MnO2 coaxial nanotubes as sulfur hosts for high-performance lithium-sulfur battery. Nano Lett. 2016, 16, 7276-7281.
Li, Y. ; Ye, D. X. ; Liu, W. ; Shi, B. ; Guo, R. ; Zhao, H. B. ; Pei, H. J. ; Xu, J. Q. ; Xie, J. Y. A MnO2/graphene oxide/ multi-walled carbon nanotubes-sulfur composite with dualefficient polysulfide adsorption for improving lithium-sulfur batteries. ACS Appl. Mater. Interfaces 2016, 8, 28566-28573.
Sun, W. ; Qu, X. G. ; Yue, X. Y. ; Yang, Y. X. ; Wang, Z. H. ; Dvaid, R. ; Sun, K. N. A simply effective double-coating cathode with MnO2 nanosheets/graphene as functionalized interlayer for high performance lithium-sulfur batteries. Electrochim. Acta 2016, 207, 198-206.
Wang, S. P. ; Yang, Z. G. ; Zhang, H. Y. ; Tan, H. B. ; Yu, J. X. ; Wu, J. P. Mesoporous β-MnO2/sulfur composite as cathode material for Li-S batteries. Electrochim. Acta 2013, 106, 307-311.
Wang, X. L. ; Li, G. ; Li, J. D. ; Zhang, Y. N. ; Wook, A. ; Yu, A. P. ; Chen, Z. W. Structural and chemical synergistic encapsulation of polysulfides enables ultralong-life lithiumsulfur batteries. Energy Environ. Sci. 2016, 9, 2533-2538.
Hou, Y. P. ; Mao, H. Z. ; Xu, L. Q. MIL-100(V) and MIL-100(V)/rGO with various valence states of vanadium ions as sulfur cathode hosts for lithium-sulfur batteries. Nano Res. 2017, 10, 344-353.
Wang, X. L. ; Li, G. ; Hassan, F. M. ; Li, J. D. ; Fan, X. Y. ; Batmaz, R. ; Xiao, X. C. ; Chen, Z. W. Sulfur covalently bonded graphene with large capacity and high rate for highperformance sodium-ion batteries anodes. Nano Energy 2015, 15, 746-754.
He, Y. Y. ; Xu, L. Q. ; Zhai, Y. J. ; Li, A. H. ; Chen, X. X. A hexangular ring-core NiCo2O4 porous nanosheet/NiO nanoparticle composite as an advanced anode material for LIBs and catalyst for CO oxidation applications. Chem. Commun. 2015, 51, 14768-14771.
Sharma, Y. ; Sharma, N. ; Subba Rao, G. V. ; Chowdari, B. V. R. Nanophase ZnCo2O4 as a high performance anode material for Li-ion batteries. Adv. Funct. Mater. 2007, 17, 2855-2861.
Li, S. L. ; Li, A. H. ; Zhang, R. R. ; He, Y. Y. ; Zhai, Y. J. ; Xu, L. Q. Hierarchical porous metal ferrite ball-in-ball hollow spheres: General synthesis, formation mechanisms and high performances as anode materials for Li-ion batteries. Nano Res. 2014, 7, 1116-1127.
Dong, C. F. ; Xu, L. Q. Cobalt- and cadmium-based metalorganic frameworks as high-performance anodes for sodium ion batteries and lithium ion batteries. ACS Appl. Mater. Interfaces 2017, 9, 7160-7168.
Su, H. ; Xu, Y. F. ; Feng, S. C. ; Wu, Z. G. ; Sun, X. P. ; Shen, C. H. ; Wang, J. Q. ; Li, J. T. ; Huang, L. ; Sun, S. G. Hierarchical Mn2O3 hollow microspheres as anode material of lithium ion battery and its conversion reaction mechanism investigated by XANES. ACS Appl. Mater. Interfaces 2015, 7, 8488-8494.
Li, A. H. ; Xu, L. Q. ; Li, S. L. ; He, Y. Y. ; Zhang, R. R. ; Zhai, Y. J. One-dimensional manganese borate hydroxide nanorods and the corresponding manganese oxyborate nanorods as promising anodes for lithium ion batteries. Nano Res. 2015, 8, 554-565.
Chen, X. F. ; Huang, Y. ; Huang, H. J. ; Wang, M. Y. ; Wang, K. Silver-modified hollow ZnSnO3 boxes as high capacity anode materials for Li-ion batteries. Mater. Lett. 2015, 149, 33-36.
Chen, H. ; Chen, C. ; Liu, Y. J. ; Zhao, X. L. ; Ananth, N. ; Zheng, B. N. ; Peng, L. ; Huang, T. Q. ; Gao, W. W. ; Gao, C. High-quality graphene microflower design for high-performance Li-S and Al-ion batteries. Adv. Energy Mater. 2017, 7, 1700051.