Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
A thermal emitter composed of a frequency-selective surface metamaterial layer and a hexagonal boron nitride-encapsulated graphene filament is demonstrated. The broadband thermal emission of the metamaterial (consisting of ring resonators) was tailored into two discrete bands, and the measured reflection and emission spectra agreed well with the simulation results. The high modulation frequencies that can be obtained in these devices, coupled with their operation in air, confirm their feasibility for use in applications such as gas sensing.
Petersen, C. R. ; Møller, U. ; Kubat, I. ; Zhou, B. B. ; Dupont, S. ; Ramsay, J. ; Benson, T. ; Sujecki, S. ; Abdel-Moneim, N. ; Tang, Z. Q. et al. Mid-infrared supercontinuum covering the 1.4-13.3 μm molecular fingerprint region using ultra-high NA chalcogenide step-index fibre. Nat. Photonics 2014, 8, 830-834.
Schliesser, A. ; Picqué, N. ; Hänsch, T. W. Mid-infrared frequency combs. Nat. Photonics 2012, 6, 440-449.
Stuart, B. H. Infrared Spectroscopy: Fundamentals and Applications; Wiley: New York, 2005.
Lee, B. G. ; Belkin, M. A. ; Audet, R. ; MacArthur, J. ; Diehl, L. ; Pflügl, C. ; Capasso, F. ; Oakley, D. C. ; Chapman, D. ; Napoleone, A. et al. Widely tunable single-mode quantum cascade laser source for mid-infrared spectroscopy. Appl. Phys. Lett. 2007, 91, 231101.
Lin, P. T. ; Kwok, S. W. ; Lin, H. Y. G. ; Singh, V. ; Kimerling, L. C. ; Whitesides, G. M. ; Agarwal, A. Mid-infrared spectrometer using opto-nanofluidic slot-waveguide for label-free on-chip chemical sensing. Nano Lett. 2014, 14, 231-238.
Wysocki, G. ; Weidmann, D. Molecular dispersion spectroscopy for chemical sensing using chirped mid-infrared quantum cascade laser. Opt. Express 2010, 18, 26123-26140.
Willer, U. ; Saraji, M. ; Khorsandi, A. ; Geiser, P. ; Schade, W. Near- and mid-infrared laser monitoring of industrial processes, environment and security applications. Opt. Lasers Eng. 2006, 44, 699-710.
Soifer, B. T. ; Neugebauer, G. ; Matthews, K. ; Egami, E. ; Becklin, E. E. ; Weinberger, A. J. ; Ressler, M. ; Werner, M. W. ; Evans, A. S. ; Scoville, N. Z. et al. High resolution midinfrared imaging of ultraluminous infrared galaxies. Astron. J. 2000, 119, 509-523.
Nash, G. R. ; Forman, H. L. ; Smith, S. J. ; Robinson, P. B. ; Buckle L. ; Coomber, S. D. ; Emeny, M. T. ; Gordon, N. T. ; Ashley T. Mid-infrared AlxIn1-xSb light-emitting diodes and photodiodes for hydrocarbon sensing. IEEE Sens. J. 2009, 9, 1240-1243.
Haigh, M. K. ; Nash, G. R. ; Smith, S. J. ; Buckle L. ; Emeny, M. T. ; Ashley T. Mid-infrared AlxIn1-xSb light-emitting diodes. Appl. Phys. Lett. 2007, 90, 231116.
Kim, M. ; Canedy, C. L. ; Bewley, W. W. ; Kim, C. S. ; Lindle, J. R. ; Abell, J. ; Vurgaftman I. ; Meyer, J. R. Interband cascade laser emitting at λ = 3.75 μm in continuous wave above room temperature. Appl. Phys. Lett. 2008, 92, 191110.
Yao, Y. ; Hoffman, A. J. ; Gmachl, C. F. Mid-infrared quantum cascade lasers. Nat. Photonics 2012, 6, 432-439.
Ali, S. Z. ; De Luca, A. ; Hopper, R. ; Boual, S. ; Gardner, J. ; Udrea, F. A low-power, low-cost infra-red emitter in CMOS technology. IEEE Sens. J. 2015, 15, 6775-6782.
Barnard, H. R. ; Zossimova, E. ; Mahlmeister, N. H. ; Lawton, L. M. ; Luxmoore, I. J. ; Nash, G. R. Boron nitride encapsulated Graphene infrared emitters. Appl. Phys. Lett. 2016, 108, 131110.
Mahlmeister, N. H. ; Lawton, L. M. ; Luxmoore, I. J. ; Nash, G. R. Modulation characteristics of graphene-based thermal emitters. Appl. Phys. Express 2016, 9, 012105.
Lee, C. ; Wei, X. ; Kysar, J. W. ; Hone, J. Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science 2008, 321, 385-388.
Campos-Delgado, J. ; Kim, Y. A. ; Hayashi, T. ; Morelos-Gómez, A. ; Hofmann, M. ; Muramatsu, H. ; Endo, M. ; Terrones, H. ; Shullf R. D. ; Dresselhaus M. S. et al. Thermal stability studies of CVD-grown graphene nanoribbons: Defect annealing and loop formation. Chem. Phys. Lett. 2009, 469, 177-182.
Murali, R. ; Yang, Y. X. ; Brenner, K. ; Beck, T. ; Meindl, J. D. Breakdown current density of graphene nanoribbons. Appl. Phys. Lett. 2009, 94, 243114.
Basile, G. ; Bernardin, C. ; Olla, S. Momentum conserving model with anomalous thermal conductivity in low dimensional systems. Phys. Rev. Lett. 2006, 96, 204303.
Lepri, S. ; Livi, R. ; Politi, A. Thermal conduction in classical low-dimensional lattices. Phys. Reports 2003, 377, 1-80.
Celanovic, I. ; Jovanovic, N. ; Kassakian, J. Two-dimensional tungsten photonic crystals as selective thermal emitters. Appl. Phys. Lett. 2008, 92, 193101.
Pralle, M. U. ; Moelders, N. ; McNeal, M. P. ; Puscasu, I. ; Greenwald, A. C. ; Daly, J. T. ; Johnson, E. A. ; George, T. ; Choi, D. S. ; El-Kady, I. et al. Photonic crystal enhanced narrow-band infrared emitters. Appl. Phys. Lett. 2002, 81, 4685-4687.
Gu, J. Q. ; Singh, R. ; Liu, X. J. ; Zhang, X. Q. ; Ma, Y. F. ; Zhang, S. ; Maier, S. A. ; Tian, Z. ; Azad, A. K. ; Chen, H. T. et al. Active control of electromagnetically induced transparency analogue in terahertz metamaterials. Nat. Commun. 2012, 3, 1151.
Landy, N. I. ; Sajuyigbe, S. ; Mock, J. J. ; Smith, D. R. ; Padilla, W. J. Perfect metamaterial absorber. Phys. Rev. Lett. 2008, 100, 207402.
Aydin, K. ; Bulu, I. ; Ozbay, E. Subwavelength resolution with a negative-index metamaterial superlens. Appl. Phys. Lett. 2007, 90, 254102.
Liu, X. L. ; Tyler, T. ; Starr, T. ; Starr, A. F. ; Jokerst, N. M. ; Padilla, W. J. Taming the blackbody with infrared metamaterials as selective thermal emitters. Phys. Rev. Lett. 2011, 107, 045901.
Argyropoulos, C. ; Le, K. Q. ; Mattiucci, N. ; D'Aguanno, G. ; Alu, A. Broadband absorbers and selective emitters based on plasmonic Brewster metasurfaces. Phys. Rev. B 2013, 87, 205112.
Gusynin, V. P. ; Sharapov, S. G. ; Carbotte, J. P. Magnetooptical conductivity in graphene. J. Phys. : Condens. Matter 2007, 19, 026222.
Gusynin, V. P. ; Sharapov, S. G. ; Carbotte, J. P. Sum rules for the optical and hall conductivity in graphene. Phys. Rev. B 2007, 75, 165407.
Hsieh, L. H. ; Chang, K. Equivalent lumped elements G, L, C, and unloaded Q's of closed- and open-loop ring resonators. IEEE Trans. Microw. Theory Techn. 2002, 50, 453-460.
839
Views
22
Downloads
31
Crossref
N/A
Web of Science
28
Scopus
1
CSCD
Altmetrics
This article is published with open access at link.Springer.com
This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.