AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Acidity-triggered TAT-presenting nanocarriers augment tumor retention and nuclear translocation of drugs

Wei Jiang1Jilong Wang2Jinbin Yang3Zhiwei He4Zhenhui Hou4Yingli Luo2Li Wang2Jing Liu2Houbing Zhang1Yangyang Zhao2Guoqing Zhang1Fang Huang4Xuechang Zhou3Lifeng Yan1( )Xianzhu Yang5( )Yucai Wang2( )Jun Wang5
Hefei National Laboratory for Physical Sciences at the MicroscaleUniversity of Science and Technology of ChinaHefei230027China
The CAS Key Laboratory of Innate Immunity and Chronic DiseaseSchool of Life Sciences and Medical CenterUniversity of Science and Technology of ChinaHefei230027China
School of Chemistry and Environmental EngineeringShenzhen UniversityShenzhen518060China
School of Earth and Space SciencesUniversity of Science and Technology of ChinaHefei230027China
Institutes for Life SciencesSchool of Medicine and National Engineering Research Center for Tissue Restoration and ReconstructionSouth China University of TechnologyGuangzhou510006China
Show Author Information

Graphical Abstract

Abstract

Hierarchical targeting strategy can combat the sequential drug delivery barriers by changing their properties with response to tumor stimuli. Among these strategies, much less attention has been paid to address the issues of rapid tumor clearance and insufficient cellular translocation. In this work, we demonstrate that a transactivator of transcription (TAT)-presenting nanomedicine (DATAT-NP/Pt), apart from improving tumor accumulation and cellular uptake, can simultaneously enhance tumor retention and promote nuclear translocation of encapsulated platinum prodrugs, and thus improve therapeutic efficacy. Specifically, a protecting 2, 3-dimethylmaleic anhydride (DA) corona on the nanomedicine prevented the TAT peptide from serum. DATAT-NP/Pt efficiently accumulated at the tumor site through the enhanced permeability and retention (EPR) effect, followed by acid-triggered TAT presenting within the tumor acidic microenvironment (pH ~ 6.8). The exposed TAT peptide augmented tumor retention and nuclear translocation of DATAT-NP/Pt. We used a tumor-on-a-chip microfluidic system to real-time mimic and analyze tumor accumulation and retention at physiological flow conditions and revealed that surface absorption of nanomedicines on tumors was critical in determining their tumor retention and clearance. Furthermore, the TAT peptide rapidly translocated the DATAT-NP/Pt into the perinuclear region, allowing for higher nuclear platinum concentrations and increased Pt-DNA adduct formation in nuclei, which consequently reversed cisplatin resistance. Our work presents a new strategy to overcome pathophysiological barriers of tumor clearance and insufficient cellular translocation and provides new insights for the design of cancer nanomedicines.

References

1

Shi, J. J.; Kantoff, P. W.; Wooster, R.; Farokhzad, O. C. Cancer nanomedicine: Progress, challenges and opportunities. Nat. Rev. Cancer 2017, 17, 20–37.

2

Davis, M. E.; Chen, Z.; Shin, D. M. Nanoparticle therapeutics: An emerging treatment modality for cancer. Nat. Rev. Drug Discov. 2008, 7, 771–782.

3

Wang, J. Q.; Mao, W. W.; Lock, L. L.; Tang, J. B.; Sui, M. H.; Sun, W. L.; Cui, H. G.; Xu, D.; Shen, Y. Q. The role of micelle size in tumor accumulation, penetration, and treatment. ACS Nano 2015, 9, 7195–7206.

4

Byrne, J. D.; Betancourt, T.; Brannon-Peppas, L. Active targeting schemes for nanoparticle systems in cancer therapeutics. Adv. Drug. Deliv. Rev. 2008, 60, 1615–1626.

5

Schrama, D.; Reisfeld, R. A.; Becker, J. C. Antibody targeted drugs as cancer therapeutics. Nat Rev. Drug Discov. 2006, 5, 147–159.

6

Lu, Y.; Aimetti, A. A.; Langer, R.; Gu, Z. Bioresponsive materials. Nat. Rev. Mater. 2016, 2, 16075.

7

Wang, T. T.; Wang, D. G.; Liu, J. P.; Feng, B.; Zhou, F. Y.; Zhang, H. W.; Zhou, L.; Yin, Q.; Zhang, Z. W.; Cao, Z. L. et al. Acidity-triggered ligand-presenting nanoparticles to overcome sequential drug delivery barriers to tumors. Nano Lett. 2017, 17, 5429–5436.

8

Torchilin, V. P. Multifunctional, stimuli-sensitive nanoparticulate systems for drug delivery. Nat. Rev. Drug Discov. 2014, 13, 813–827.

9

Mura, S.; Nicolas, J.; Couvreur, P. Stimuli-responsive nanocarriers for drug delivery. Nat. Mater. 2013, 12, 991–1003.

10

Mo, R.; Jiang, T. Y.; DiSanto, R.; Tai, W. Y.; Gu, Z. Atptriggered anticancer drug delivery. Nat. Commun. 2014, 5, 3364.

11

Ji, T. J.; Lang, J. Y.; Wang, J.; Cai, R.; Zhang, Y. L.; Qi, F. F.; Zhang, L. J.; Zhao, X.; Wu, W. J.; Hao, J. H. et al. Designing liposomes to suppress extracellular matrix expression to enhance drug penetration and pancreatic tumor therapy. ACS Nano 2017, 11, 8668–8678.

12

Liu, Y.; van der Mei, H. C.; Zhao, B. R.; Zhai, Y.; Cheng, T. J.; Li, Y. F.; Zhang, Z. K.; Busscher, H. J.; Ren, Y. J.; Shi, L. Q. Eradication of multidrug-resistant staphylococcal infections by light-activatable micellar nanocarriers in a murine model. Adv. Funct. Mater. 2017, 27, 1701974.

13

Du, B. J.; Liu, J. H.; Ding, G. Y.; Han, X.; Li, D.; Wang, E. K.; Wang, J. Positively charged graphene/fe3o4/polyethylenimine with enhanced drug loading and cellular uptake for magnetic resonance imaging and magnetresponsive cancer therapy. Nano Res. 2017, 10, 2280–2295.

14

Wang, S.; Huang, P.; Chen, X. Y. Hierarchical targeting strategy for enhanced tumor tissue accumulation/retention and cellular internalization. Adv. Mater. 2016, 28, 7340–7364.

15

Tang, L.; Yang, X. J.; Yin, Q.; Cai, K. M.; Wang, H.; Chaudhury, I.; Yao, C.; Zhou, Q.; Kwon, M.; Hartman, J. A. et al. Investigating the optimal size of anticancer nanomedicine. Proc. Natl. Acad. Sci. USA 2014, 111, 15344–15349.

16

Larsen, E. K. U.; Nielsen, T.; Wittenborn, T.; Birkedal, H.; Vorup-Jensen, T.; Jakobsen, M. H.; Ostergaard, L.; Horsman, M. R.; Besenbacher, F.; Howard, K. A. et al. Size-dependent accumulation of pegylated silane-coated magnetic iron oxide nanoparticles in murine tumors. Acs Nano 2009, 3, 1947–1951.

17

Zhang, D.; Qi, G. B.; Zhao, Y. X.; Qiao, S. L.; Yang, C.; Wang, H. In situ formation of nanofibers from purpurin18-peptide conjugates and the assembly induced retention effect in tumor sites. Adv. Mater. 2015, 27, 6125–6130.

18

Albanese, A.; Lam, A. K.; Sykes, E. A.; Rocheleau, J. V.; Chan, W. C. W. Tumour-on-a-chip provides an optical window into nanoparticle tissue transport. Nat. Commun. 2013, 4, 2718.

19

Yameen, B.; Choi, W. I.; Vilos, C.; Swami, A.; Shi, J. J.; Farokhzad, O. C. Insight into nanoparticle cellular uptake and intracellular targeting. J. Control. Release 2014, 190, 485–499.

20

Pan, L. M.; Liu, J. N.; He, Q. J.; Wang, L. J.; Shi, J. L. Overcoming multidrug resistance of cancer cells by direct intranuclear drug delivery using TAT-conjugated mesoporous silica nanoparticles. Biomaterials 2013, 34, 2719–2730.

21

Holohan, C.; van Schaeybroeck, S.; Longley, D. B.; Johnston, P. G. Cancer drug resistance: An evolving paradigm. Nat. Rev. Cancer 2013, 13, 714–726.

22

Meijer, C.; Mulder, N. H.; Timmer-Bosscha, H.; Sluiter, W. J.; Meersma, G. J.; De Vries, E. G. E. Relationship of cellular glutathione to the cytotoxicity and resistance of seven platinum compounds. Cancer Res. 1992, 52, 6885–6889.

23

Han, K.; Zhang, W. Y.; Zhang, J.; Lei, Q.; Wang, S. B.; Liu, J. W.; Zhang, X. Z.; Han, H. Y. Acidity-triggered tumortargeted chimeric peptide for enhanced intra-nuclear photodynamic therapy. Adv. Funct. Mater. 2016, 26, 4351 Func.

24

Han, S. S.; Li, Z. Y.; Zhu, J. Y.; Han, K.; Zeng, Z. Y.; Hong, W.; Li, W. X.; Jia, H. Z.; Liu, Y.; Zhuo, R. X. et al. Dual-pH sensitive charge-reversal polypeptide micelles for tumor-triggered targeting uptake and nuclear drug delivery. Small 2015, 11, 2543l ive.

25

Xu, P. S.; van Kirk, E. A.; Zhan, Y. H.; Murdoch, W. J.; Radosz, M.; Shen, Y. Q. Targeted charge-reversal nanoparticles for nuclear drug delivery. Angew. Chem., Int. Ed. 2007, 46, 4999–5002.

26

Wang, H. B.; Li, Y.; Bai, H. S.; Shen, J.; Chen, X.; Ping, Y.; Tang, G. P. A cooperative dimensional strategy for enhanced nucleus-targeted delivery of anticancer drugs. Adv. Funct. Mater. 2017, 27, 1700339.

27

Görlich, D.; Kutay, U. Transport between the cell nucleus and the cytoplasm. Annu. Rev. Cell Dev. Biol. 1999, 15, 607–660.

28

Tammam, S. N.; Azzazy, H. M. E.; Lamprecht, A. How successful is nuclear targeting by nanocarriers? J. Control. Release 2016, 229, 140–153.

29

Qiu, L. P.; Chen, T.; Öçsoy, I.; Yasun, E.; Wu, C. C.; Zhu, G. Z.; You, M. X.; Han, D.; Jiang, J. H.; Yu, R. Q. et al. A cell-targeted, size-photocontrollable, nuclear-uptake nanodrug delivery system for drug-resistant cancer therapy. Nano. Lett. 2015, 15, 457–463.

30

Huang, Y. Z.; Jiang, Y. F.; Wang, H. Y.; Wang, J. X.; Shin, M. C.; Byun, Y.; He, H.; Liang, Y. Q.; Yang, V. C. Curb challenges of the "trojan horse" approach: Smart strategies in achieving effective yet safe cell-penetrating peptide-based drug delivery. Adv. Drug Deliv. Rev. 2013, 65, 1299–1315.

31

Pan, L. M.; He, Q. J.; Liu, J. N.; Chen, Y.; Ma, M.; Zhang, L. L.; Shi, J. L. Nuclear-targeted drug delivery of TAT peptide-conjugated monodisperse mesoporous silica nanoparticles. J. Am. Chem. Soc. 2012, 134, 5722–5725.

32

Vivès, E.; Brodin, P.; Lebleu, B. A truncated HIV-1 TAT protein basic domain rapidly translocates through the plasma membrane and accumulates in the cell nucleus. J. Biol. Chem. 1997, 272, 16010–16017.

33

Mattaj, I. W.; Englmeier, L. Nucleocytoplasmic transport: The soluble phase. Annu. Rev. Biochem. 1998, 67, 265–306.

34

Torchilin, V. P. Tat peptide-mediated intracellular delivery of pharmaceutical nanocarriers. Adv. Drug Deliv. Rev. 2008, 60, 548–558.

35

Hsu, P. P.; Sabatini, D. M. Cancer cell metabolism: Warburg and beyond. Cell 2008, 134, 703–707.

36

Heiden, M. G. V.; Cantley, L. C.; Thompson, C. B. Understanding the warburg effect: The metabolic requirements of cell proliferation. Science 2009, 324, 1029–1033.

37

Kelland, L. The resurgence of platinum-based cancer chemotherapy. Nat. Rev. Cancer 2007, 7, 573–584.

38

Wheate, N. J.; Walker, S.; Craig, G. E.; Oun, R. The status of platinum anticancer drugs in the clinic and in clinical trials. Dalton Trans. 2010, 39, 8113–8127.

39

Wang, X.; Yang, C. C.; Zhang, Y. J.; Zhen, X.; Wu, W.; Jiang, X. Q. Delivery of platinum(Ⅳ) drug to subcutaneous tumor and lung metastasis using bradykinin-potentiating peptide-decorated chitosan nanoparticles. Biomaterials 2014, 35, 6439–6453.

40

Dhar, S.; Gu, F. X.; Langer, R.; Farokhzad, O. C.; Lippard, S. J. Targeted delivery of cisplatin to prostate cancer cells by aptamer functionalized Pt(Ⅳ) prodrug-plga-peg nanoparticles. Proc. Natl. Acad. Sci. USA 2008, 105, 17356–17361.

41

Fu, L. Y.; Yuan, P.; Ruan, Z.; Liu, L.; Li, T. W.; Yan, L. F. Ultra-pH-sensitive polypeptide micelles with large fluorescence off/on ratio in near infrared range. Polym. Chem. 2017, 8, 1028–1038.

42

Li, H. J.; Du, J. Z.; Du, X. J.; Xu, C. F.; Sun, C. Y.; Wang, H. X.; Cao, Z. T.; Yang, X. Z.; Zhu, Y. H.; Nie, S. M. et al. Stimuli-responsive clustered nanoparticles for improved tumor penetration and therapeutic efficacy. Proc. Natl. Acad. Sci. USA 2016, 113, 4164–4169.

43

Mishra, A.; Lai, G. H.; Schmidt, N. W.; Sun, V. Z.; Rodriguez, A. R.; Tong, R.; Tang, L.; Cheng, J.; Deming, T. J.; Kamei, D. T. et al. Translocation of HIV TAT peptide and analogues induced by multiplexed membrane and cytoskeletal interactions. Proc. Natl. Acad. Sci. USA 2011, 108, 16883–16888.

44

Xu, X. Y.; Xie, K.; Zhang, X. Q.; Pridgen, E. M.; Park, G. Y.; Cui, D. S.; Shi, J. J.; Wu, J.; Kantoff, P. W.; Lippard, S. J. et al. Enhancing tumor cell response to chemotherapy through nanoparticle-mediated codelivery of sirna and cisplatin prodrug. Proc. Natl. Acad. Sci. USA 2013, 110, 18638–18643.

45

Han, K.; Zhang, J.; Zhang, W. Y.; Wang, S. B.; Xu, L. M.; Zhang, C.; Zhang, X. Z.; Han, H. Y. Tumor-triggered geometrical shape switch of chimeric peptide for enhanced in vivo tumor internalization and photodynamic therapy. ACS Nano 2017, 11, 3178–3188.

46

Uhrich, K. E.; Cannizzaro, S. M.; Langer, R. S.; Shakesheff, K. M. Polymeric systems for controlled drug release. Chem. Rev. 1999, 99, 3181–3198.

47

Markman, J. L.; Rekechenetskiy, A.; Holler, E.; Ljubimova, J. Y. Nanomedicine therapeutic approaches to overcome cancer drug resistance. Adv. Drug Deliv. Rev. 2013, 65, 1866–1879.

48

Wu, M. Y.; Meng, Q. S.; Chen, Y.; Du, Y. Y.; Zhang, L. X.; Li, Y. P.; Zhang, L. L.; Shi, J. L. Large-pore ultrasmall mesoporous organosilica nanoparticles: Micelle/precursor co-templating assembly and nuclear-targeted gene delivery. Adv. Mater. 2015, 27, 215–222.

49

Jin, E. L.; Zhang, B.; Sun, X. R.; Zhou, Z. X.; Ma, X. P.; Sun, Q. H.; Tang, J. B.; Shen, Y. Q.; Van Kirk, E.; Murdoch, W. J. et al. Acid-active cell-penetrating peptides for in vivo tumor-targeted drug delivery. J. Am. Chem. Soc. 2013, 135, 933–940.

50

Sun, T. D.; Cui, W.; Yan, M.; Qin, G.; Guo, W.; Gu, H. X.; Liu, S. Q.; Wu, Q. Target delivery of a novel antitumor organoplatinum(Ⅳ)-substituted polyoxometalate complex for safer and more effective colorectal cancer therapy in vivo. Adv. Mater. 2016, 28, 7397–7404.

51

Wang, X. Y.; Guo, Z. J. Targeting and delivery of platinumbased anticancer drugs. Chem. Soc. Rev. 2013, 42, 202–224.

52

Petros, R. A.; DeSimone, J. M. Strategies in the design of nanoparticles for therapeutic applications. Nat. Rev. Drug Discov. 2010, 9, 615–627.

53

Peer, D.; Karp, J. M.; Hong, S.; FaroKHzad, O. C.; Margalit, R.; Langer, R. Nanocarriers as an emerging platform for cancer therapy. Nat. Nanotechnol. 2007, 2, 751–760.

54

Heldin, C. H.; Rubin, K.; Pietras, K.; Östman, A. High interstitial fluid pressure—An obstacle in cancer therapy. Nat. Rev. Cancer 2004, 4, 806–813.

Nano Research
Pages 5716-5734
Cite this article:
Jiang W, Wang J, Yang J, et al. Acidity-triggered TAT-presenting nanocarriers augment tumor retention and nuclear translocation of drugs. Nano Research, 2018, 11(10): 5716-5734. https://doi.org/10.1007/s12274-017-1925-4
Part of a topical collection:

755

Views

26

Crossref

N/A

Web of Science

28

Scopus

3

CSCD

Altmetrics

Received: 01 October 2017
Revised: 13 November 2017
Accepted: 16 November 2017
Published: 03 October 2018
© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2017
Return