AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Synthesis, mechanical investigation, and application of nitrogen and phosphorus co-doped carbon dots with a high photoluminescent quantum yield

Quan Xu1( )Bofan Li1Yingchun Ye1Wei Cai1Weijun Li1Chuanyao Yang2Yusheng Chen3Meng Xu4Neng Li5( )Xusheng Zheng6Jason Street7Yan Luo8Lulu Cai2( )
State Key Laboratory of Heavy Oil ProcessingChina University of Petroleum (Beijing)Beijing102249China
Department of PharmacySichuan Academy of Medical Science & Sichuan Provincial People's HospitalSchool of MedicineUniversity of Electronic Science and Technology of ChinaChengdu610072China
Department of ChemistryUniversity of AkronAkronOhio44325USA
Department of OrthopedicsGeneral Hospital of Chinese People's Liberation ArmyBeijing100853China
State Key Laboratory of Silicate Materials for ArchitecturesWuhan University of TechnologyWuhan430070China
National Synchrotron Radiation Laboratory (NSRL)University of Science and Technology of ChinaHefei230029China
Department of Sustainable BioproductsMississippi State UniversityStarkvilleMS39762USA
Department of Chemical EngineeringWest Virginia UniversityMorgantownWV26506USA
Show Author Information

Graphical Abstract

Abstract

Heteroatom-doped carbon dots (CDs) with a high photoluminescent quantum yield (PLQY) have recently attracted attention due to their applications in chemical sensors, photocatalysis, bioimaging, and drug delivery. Nitrogen and phosphorus are in close proximity to carbon in the periodic table and are key tracking elements in the field of biomedical imaging. These two elements alter the optical and electronic properties of CDs and help improve the fundamental understanding of their PLQY. This can also lead to multifunctional usage in photoimaging and photothermal therapy. However, most PLQYs resulting from the synthesis of P-doped CDs are currently below 50%. These CDs have limited usefulness in the fields of bioimaging and drug delivery. In this study, a single-step, high-efficiency hydrothermal method was applied to synthesize nitrogen and phosphorous-doped carbon dots ((N, P)-CDs) with a PLQY of up to 53.8% with independent emission behavior. Moreover, the CDs presented high monodispersity, robust excitation-independent luminescence, and stability over a large pH range. Spectroscopic investigations indicated that the PLQY of the (N, P)-CDs was primarily due to the addition of P and the passivation effect of the oxidized surface. The excellent fluorescence properties of (N, P)-CDs can be effectively and selectively quenched by Hg2+ ions. Such systems show a linear response in the 0–900 nM concentration range with a short response time, indicating their potential for applications in the fields of chemistry and biology.

Electronic Supplementary Material

Download File(s)
12274_2017_1937_MOESM1_ESM.pdf (1.9 MB)

References

1

Xu, X. Y.; Ray, R.; Gu, Y. L.; Ploehn, H. J.; Gearheart, L.; Raker, K.; Scrivens, W. A. Electrophoretic analysis and purification of fluorescent single-walled carbon nanotube fragments. J. Am. Chem. Soc. 2004, 126, 12736-12737.

2

Lim, S. Y.; Shen, W.; Gao, Z. Q. Carbon quantum dots and their applications. Chem. Soc. Rev. 2015, 44, 362-381.

3

Jiang, K.; Sun, S.; Zhang, L.; Lu, Y.; Wu, A. G.; Cai, C. Z.; Lin, H. W. Red, green, and blue luminescence by carbon dots: Full-color emission tuning and multicolor cellular imaging. Angew. Chem., Int. Ed. 2015, 54, 5360-5363.

4

Yan, F. Y.; Zou, Y.; Wang, M.; Mu, X. L.; Yang, N.; Chen, L. Highly photoluminescent carbon dots-based fluorescent chemosensors for sensitive and selective detection of mercury ions and application of imaging in living cells. Sensor. Actuat. B-Chem. 2014, 192, 488-495.

5

Xu, Q.; Zhao, J. G.; Liu, Y.; Pu, P.; Wang, X. S.; Chen, Y S. .; Gao, C.; Chen, J. R.; Zhou, H. J. Enhancing the luminescence of carbon dots by doping nitrogen element and its application in the detection of Fe(Ⅲ). J. Mater. Sci. 2015, 50, 2571-2576.

6

Yang, S. W.; Sun, J.; Li, X. B.; Zhou, W.; Wang, Z. Y.; He, P.; Ding, G. Q.; Xie, X. M.; Kang, Z. H.; Jiang, M. H. Large-scale fabrication of heavy doped carbon quantum dots with tunable-photoluminescence and sensitive fluorescence detection. J. Mater. Chem. A 2014, 2, 8660-8667.

7

Yang, X. M.; Luo, Y. W.; Zhu, S. S.; Feng, Y. J.; Zhuo, Y.; Dou, Y. One-pot synthesis of high fluorescent carbon nanoparticles and their applications as probes for detection of tetracyclines. Biosens. Bioelectron. 2014, 56, 6-11.

8

Posthuma-Trumpie, G. A.; Wichers, J. H.; Koets, M.; Berëndsen, L. B. J. M.; van Amerongen, A. Amorphous carbon nanoparticles: A versatile label for rapid diagnostic (immuno)assays. Anal. Bioanal. Chem. 2012, 402, 593-600.

9

Xu, Q.; Liu, Y.; Su, R. G.; Cai, L. L.; Li, B. F.; Zhang, Y. Y.; Zhang, L. Z.; Wang, Y. J.; Wang, Y.; Li, N. et al. Highly fluorescent Zn-doped carbon dots as Fenton reaction-based bio-sensors: An integrative experimental-theoretical consideration. Nanoscale 2016, 8, 17919-17927.

10

Liu, R. H.; Li, H. T.; Kong, W. Q.; Liu, J.; Liu, Y.; Tong, C. Y.; Zhang, X.; Kang, Z. H. Ultra-sensitive and selective Hg2+ detection based on fluorescent carbon dots. Mater. Res. Bull. 2013, 48, 2529-2534.

11

Tang, D.; Liu, J.; Wu, X. Y.; Liu, R. H.; Han, X.; Han, Y. Z.; Huang, H.; Liu, Y.; Kang, Z. K. Carbon quantum dot/NiFe layered double-hydroxide composite as a highly efficient electrocatalyst for water oxidation. ACS Appl. Mater. Interfaces 2014, 6, 7918-7925.

12

Ruan, S. B.; Qian, J.; Shen, S.; Zhu, J. H.; Jiang, X. G.; He, Q.; Gao, H. L. A simple one-step method to prepare fluorescent carbon dots and their potential application in non-invasive glioma imaging. Nanoscale 2014, 6, 10040- 10047.

13

Xing, X. H.; Zhang, B. B.; Wang, X. H.; Liu, F. J.; Shi, D. L.; Cheng, Y. S. An ※imaging-biopsy§ strategy for colorectal tumor reconfirmation by multipurpose paramagnetic quantum dots. Biomaterials 2015, 48, 16-25.

14

Yang, W. T.; Guo, W. S.; Le, W. J.; Lv, G. X.; Zhang, F. H.; Shi, L.; Wang, X. L.; Wang, J.; Wang, J.; Chang, J. et al. Albumin-bioinspired Gd: CuS nanotheranostic agent for in vivo photoacoustic/magnetic resonance imaging-guided tumor-targeted photothermal therapy. ACS Nano 2016, 10, 10245-10257.

15

Yuan, F. L.; Li, S. H.; Fan, Z. T.; Meng, X. Y.; Fan, L. Z.; Yang, S. H. Shining carbon dots: Synthesis and biomedical and optoelectronic applications. Nano Today 2016, 11, 565-586.

16

Yuan, F. L.; Wang, Z. B.; Li, X. H.; Li, Y. C.; Tan, Z. A.; Fan, L. Z.; Yang, S. H. Bright multicolor bandgap fluorescent carbon quantum dots for electroluminescent light-emitting diodes. Adv. Mater. 2017, 29, 1604436.

17

Wang, Z. F.; Yuan, F. L.; Li, X. H.; Li, Y. C.; Zhong, H. Z.; Fan, L. Z.; Yang, S. H. 53% efficient red emissive carbon quantum dots for high color rendering and stable warm white-light-emitting diodes. Adv. Mater. 2017, 29, 1702910.

18

Liu, R. L.; Wu, D. Q.; Liu, S. H.; Koynov, K.; Knoll, W.; Li, Q. An aqueous route to multicolor photoluminescent carbon dots using silica spheres as carriers. Angew. Chem., Int. Ed. 2009, 121, 4668-4671.

19

Wang, X.; Cao, L.; Lu, F. S.; Meziani, M. J.; Li, H. T.; Qi, G.; Zhou, B.; Harruff, B. A.; Kermarrec, F.; Sun, Y. P. Photoinduced electron transfers with carbon dots. Chem. Commun. 2009, 3774-3776.

20

Zhu, S. J.; Meng, Q. N.; Wang, L.; Zhang, J. H.; Song, Y. B.; Jin, H.; Zhang, K.; Sun, H. C.; Wang, H. Y.; Yang, B. Highly photoluminescent carbon dots for multicolor patterning, sensors, and bioimaging. Angew. Chem., Int. Ed. 2013, 52, 3953-3957.

21

Dong, Y. Q.; Pang, H. C.; Yang, H. B.; Guo, C. X.; Shao, J. W.; Chi, Y. W.; Li, C. M.; Yu, T. Carbon-based dots co-doped with nitrogen and sulfur for high quantum yield and excitation-independent emission. Angew. Chem., Int. Ed. 2013, 52, 7800-7804.

22

Xu, Q.; Kuang, T. R.; Liu, Y.; Cai, L. L.; Peng, X. F.; Sreenivasan, T. S.; Zhao, P.; Yu, Z. Q.; Li, N. Heteroatom- doped carbon dots: Synthesis, characterization, properties, photoluminescence mechanism and biological applications. J. Mater. Chem. B 2016, 4, 7204-7219

23

Gong, Y. Q.; Yu, B.; Yang, W.; Zhang, X. L. Phosphorus, and nitrogen co-doped carbon dots as a fluorescent probe for real-time measurement of reactive oxygen and nitrogen species inside macrophages. Biosens. Bioelectron. 2016, 79, 822-828.

24

Wang, C.; Zhou, J. D.; Ran, G. X.; Li, F.; Zhong, Z.; Song, Q. J.; Dong, Q. C. Bi-functional fluorescent polymer dots: A one-step synthesis via controlled hydrothermal treatment and application as probes for the detection of temperature and Fe3+. J. Mater. Chem. C 2017, 5, 434-443.

25

Liang, Q. H.; Ma, W. J.; Shi, Y.; Li, Z.; Yang, X. M. Easy synthesis of highly fluorescent carbon quantum dots from gelatin and their luminescent properties and applications. Carbon 2013, 60, 421-428.

26

Paraknowitsch, J. P.; Zhang, Y. J.; Wienert, B.; Thomas, A. Nitrogen- and phosphorus-co-doped carbons with tunable enhanced surface areas promoted by the doping additives. Chem. Commun. 2013, 49, 1208-1210.

27

Xu, Q.; Liu, Y.; Gao, C.; Wei, J. F.; Zhou, H. J.; Chen, Y. S.; Dong, C. B.; Sreeprasad, T. S.; Li, N.; Xia, Z. H. Synthesis, mechanistic investigation, and application of photoluminescent sulfur and nitrogen co-doped carbon dots. J. Mater. Chem. C 2015, 3, 9885-9893.

28

Wu, M. B.; Wang, Y.; Wu, W. T.; Hu, C.; Wang, X. N.; Zheng, J. T.; Li, Z. T.; Jiang, B.; Qiu, J. S. Preparation of functionalized water-soluble photoluminescent carbon quantum dots from petroleum coke. Carbon 2014, 78, 480-489.

29

Simões, E. F. C.; da Silva, J. C. G. E.; Leitão, J. M. M. Carbon dots from tryptophan doped glucose for peroxynitrite sensing. Anal. Chim. Acta 2014, 852, 174-180.

30

Sun, Y. P.; Zhou, B.; Lin, Y.; Wang, W.; Shiral Fernando, K. A.; Pathak, P.; Meziani, M. J.; Harruff, B. A.; Wang, X.; Wang, H. et al. Quantum-sized carbon dots for bright and colorful photoluminescence. J. Am. Chem. Soc. 2006, 128, 7756-7757.

31

Liang, J.; Jiao, Y.; Jaroniec, M.; Qiao, S. Z. Sulfur and nitrogen dual-doped mesoporous graphene electrocatalyst for oxygen reduction with synergistically enhanced performance. Angew. Chem., Int. Ed. 2012, 51, 11496-11500.

32

Nolan, E. M.; Lippard, S. J. Tools and tactics for the optical detection of mercuric ion. Chem. Rev. 2008, 108, 3443-3480.

33

Harris, H. H.; Pickering, I. J.; George, G. N. The chemical form of mercury in fish. Science 2003, 301, 1203-1203.

34

Qu, K. G.; Wang, J. S.; Ren, J. S.; Qu, X. G. Carbon dots prepared by hydrothermal treatment of dopamine as an effective fluorescent sensing platform for the label-free detection of iron(Ⅲ) ions and dopamine. Chem. -Eur. J. 2013, 19, 7243-7249.

35

Li, S. H.; Li, Y. C.; Cao, J.; Zhu, J.; Fan, L. Z.; Li, X. H. Sulfur-doped graphene quantum dots as a novel fluorescent probe for highly selective and sensitive detection of Fe3+. Anal. Chem. 2014, 86, 10201-10207.

36

Zhang, H. J.; Chen, Y. L.; Liang, M. J.; Xu, L. F.; Qi, S. D.; Chen, H. L.; Chen, X. G. Solid-phase synthesis of highly fluorescent nitrogen-doped carbon dots for sensitive and selective probing ferric ions in living cells. Anal. Chem. 2014, 86, 9846-9852.

37

Shi, B. F.; Su, Y. B.; Zhang, L. L.; Huang, M. J.; Liu, R. Q.; Zhao, S. L. Nitrogen and phosphorus co-doped carbon nanodots as a novel fluorescent probe for highly sensitive detection of Fe3+ in human serum and living cells. ACS Appl. Mater. Interfaces 2016, 8, 10717-10725.

Nano Research
Pages 3691-3701
Cite this article:
Xu Q, Li B, Ye Y, et al. Synthesis, mechanical investigation, and application of nitrogen and phosphorus co-doped carbon dots with a high photoluminescent quantum yield. Nano Research, 2018, 11(7): 3691-3701. https://doi.org/10.1007/s12274-017-1937-0

746

Views

81

Crossref

N/A

Web of Science

83

Scopus

9

CSCD

Altmetrics

Received: 20 September 2017
Revised: 23 November 2017
Accepted: 25 November 2017
Published: 02 August 2018
© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2017
Return