Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
Germanium-based oxide has been found to be a promising high-capacity anode material for lithium-ion batteries (LIBs). However, it exhibits poor electrochemical performance because of the drastic volume change during cycling. Herein, we designed porous Ge-Fe bimetal oxide nanowires (Ge-Fe-Ox-700 NWs) by a large-scale and facile solvothermal reaction. When used as the anode material for LIBs, these Ge-Fe-Ox-700 NWs exhibited superior electrochemical performance (~ 1, 120 mAh·g-1 at a current density of 100 mA·g-1) and good cycling performance (~ 750 mAh·g-1 after 50 cycles at a current density of 100 mA·g-1). The improved performance is due to the small NW diameter, which allows for better accommodation of the drastic volume changes and zero-dimensional nanoparticles, which shorten the diffusion length of ions and electrons.
Bruce, P. G.; Scrosati, B.; Tarascon, J. M. Nanomaterials for rechargeable lithium batteries. Angew. Chem., Int. Ed. 2008, 47, 2930–2946.
Chae, C.; Noh, H. J.; Lee, J. K.; Scrosati, B.; Sun, Y. K. A high-energy Li-ion battery using a silicon-based anode and a nano-structured layered composite cathode. Adv. Funct. Mater. 2014, 24, 3036–3042.
Wu, Z. S.; Ren, W. C.; Xu, L.; Li, F.; Cheng, H. M. Doped graphene sheets as anode materials with superhigh rate and large capacity for lithium ion batteries. ACS Nano 2011, 5, 5463–5471.
Zheng, F. C.; Yang, Y.; Chen, Q. W. High lithium anodic performance of highly nitrogen-doped porous carbon prepared from a metal-organic framework. Nat. Commun. 2014, 5, 5261.
Flandrois, S.; Simon, B. Carbon materials for lithium-ion rechargeable batteries. Carbon 1999, 37, 165–180.
Chan, C. K.; Peng, H. L.; Liu, G.; McIlwrath, K.; Zhang, X. F.; Huggins, R. A.; Cui, Y. High-performance lithium battery anodes using silicon nanowires. Nat. Nanotechnol. 2008, 3, 31–35.
Cui, G. L.; Gu, L.; Zhi, L. J.; Kaskhedikar, N.; van Aken, P. A.; Müllen, K.; Maier, J. A germanium–carbon nanocomposite material for lithium batteries. Adv. Mater. 2008, 20, 3079–3083.
Wang, X. L.; Han, W. Q.; Chen, H. Y.; Bai, J. M.; Tyson, T. A.; Yu, X. Q.; Wang, X. J.; Yang, X. Q. Amorphous hierarchical porous GeOx as high-capacity anodes for Li ion batteries with very long cycling life. J. Am. Chem. Soc. 2011, 133, 20692–20695.
Lv, D. P.; Gordin, M. L.; Yi, R.; Xu, T.; Song, J. X.; Jiang, Y. B.; Choi, D.; Wang, D. H. GeOx/reduced graphene oxide composite as an anode for Li-ion batteries: Enhanced capacity via reversible utilization of Li2O along with improved rate performance. Adv. Funct. Mater. 2014, 24, 1059–1066.
Fuller, C. S.; Severiens, J. C. Mobility of impurity ions in germanium and silicon. Phys. Rev. 1954, 96, 21–24.
Graetz, J.; Ahn, C. C.; Yazami, R.; Fultz, B. Nanocrystalline and thin film germanium electrodes with high lithium capacity and high rate capabilities. J. Electrochem. Soc. 2004, 151, A698–A702.
Murugesan, S.; Harris, J. T.; Korgel, B. A.; Stevenson, K. J. Copper-coated amorphous silicon particles as an anode material for lithium-ion batteries. Chem. Mater. 2012, 24, 1306–1315.
Lee, H.; Cho, J. Sn78Ge22@carbon core-shell nanowires as fast and high-capacity lithium storage media. Nano Lett. 2007, 7, 2638–2641.
Ren, J. G.; Wu, Q. H.; Tang, H.; Hong, G.; Zhang, W. J.; Lee, S. T. Germanium-graphene composite anode for highenergy lithium batteries with long cycle life. J. Mater. Chem. A 2013, 1, 1821–1826.
Abel, P. R.; Lin, Y. M.; de Souza, T.; Chou, C. Y.; Gupta, A.; Goodenough, J. B.; Hwang, G. S.; Heller, A.; Mullins, C. B. Nanocolumnar germanium thin films as a high-rate sodium-ion battery anode material. J. Phys. Chem. C 2013, 117, 18885–18890.
Li, L.; Seng, K. H.; Feng, C. Q.; Liu, H. K.; Guo, Z. P. Synthesis of hollow GeO2 nanostructures, transformation into Ge@C, and lithium storage properties. J. Mater. Chem. A 2013, 1, 7666–7672.
Park, M. H.; Cho, Y.; Kim, K.; Kim, J.; Liu, M. L.; Cho, J. Germanium nanotubes prepared by using the kirkendall effect as anodes for high-rate lithium batteries. Angew. Chem., Int. Ed. 2011, 123, 9821–9824.
Yang, L. C.; Gao, Q. S.; Li, L.; Tang, Y.; Wu, Y. P. Mesoporous germanium as anode material of high capacity and good cycling prepared by a mechanochemical reaction. Electrochem. Commun. 2010, 12, 418–421.
Xue, D. J.; Xin, S.; Yan, Y.; Jiang, K. C.; Yin, Y. X.; Guo, Y. G.; Wan, L. J. Improving the electrode performance of Ge through Ge@C core-shell nanoparticles and graphene networks. J. Amer. Chem. Soc. 2012, 134, 2512–2515.
Feng, J. K.; Lai, M. O.; Lu, L. Zn2GeO4 Nanorods synthesized by low-temperature hydrothermal growth for high-capacity anode of lithium battery. Electrochem. Commun. 2011, 13, 287–289.
Yi, R.; Feng, J. K.; Lv, D. P.; Gordin, M. L.; Chen, S. R.; Choi, D.; Wang, D. H. Amorphous Zn2GeO4 nanoparticles as anodes with high reversible capacity and long cycling life for Li-ion batteries. Nano Energy 2013, 2, 498–504.
Yan, Y.; Du, F. H.; Shen, X. P.; Ji, Z. Y.; Zhou, H.; Zhu, G. X. Porous SnO2-Fe2O3 nanocubes with improved electrochemical performance for lithium ion batteries. Dalton Trans. 2014, 43, 17544–17550.
Zhou, M. J.; Gordin, M. L.; Chen, S. R.; Xu, T.; Song, J. X.; Lv, D. P.; Wang, D. H. Enhanced performance of SiO/Fe2O3 composite as an anode for rechargeable Li-ion batteries. Electrochem. Commun. 2013, 28, 79–82.
Gao, Q. S.; Chen, P.; Zhang, Y. H.; Tang, Y. Synthesis and characterization of organic-inorganic hybrid GeOx/ ethylenediamine nanowires. Adv. Mater. 2008, 20, 1837–1842.
Yao, W. T.; Yu, S. H.; Wu, Q. S. From mesostructured wurtzite ZnS-nanowire/amine nanocomposites to ZnS nanowires exhibiting quantum size effects: A mild-solution chemistry approach. Adv. Funct. Mater. 2007, 17, 623–631.
Yu, L.; Zou, R. J.; Zhang, Z. Y.; Song, G. S.; Chen, Z. G.; Yang, J. M.; Hu, J. Q. A Zn2GeO4-ethylenediamine hybrid nanoribbon membrane as a recyclable adsorbent for the highly efficient removal of heavy metals from contaminated water. Chem. Commun. 2011, 47, 10719–10721.
Na, Z. L.; Huang, G.; Liang, F.; Yin, D. M.; Wang, L. M. A core-shell Fe/Fe2O3 nanowire as a high-performance anode material for lithium-ion batteries. Chem. Europ. J. 2016, 22, 12081–12087.
Li, W. H.; Zeng, L. C.; Wu, Y.; Yu, Y. Nanostructured electrode materials for lithium-ion and sodium-ion batteries via electrospinning. Sci. China Mater. 2016, 59, 287–321.
Wu, Y.; Liu, X. W.; Yang, Z. Z.; Gu, L.; Yu, Y. Nitrogendoped ordered mesoporous anatase TiO2 nanofibers as anode materials for high performance sodium-ion batteries. Small 2016, 12, 3522–3529.
Sarkar, S.; Borah, R.; Santhosha, A. L.; Dhanya, R.; Narayana, C.; Bhattacharyya, A. J.; Peter, S. C. Heterostructure composites of rGO/GeO2/PANI with enhanced performance for Li ion battery anode material. J. Power Sources 2016, 306, 791–800.
Guo, W. X.; Sun, W. W.; Lv, L. P.; Kong, S. F.; Wang, Y. Microwave-assisted morphology evolution of Fe-based metal-organic frameworks and their derived Fe2O3 nanostructures for Li-ion storage. ACS Nano 2017, 11, 4198–4205.
Wei, W.; Jia, F. F.; Qu, P.; Huang, Z. N.; Wang, H.; Guo, L. Morphology memory but reconstructing crystal structure: Porous hexagonal GeO2 nanorods for rechargeable lithium-ion batteries. Nanoscale 2017, 9, 3961–3968.
Liu, L.; Zhang, H. J.; Mu, Y. P.; Yang, J.; Wang, Y. Porous iron cobaltate nanoneedles array on nickel foam as anode materials for lithium-ion batteries with enhanced electrochemical performance. ACS Appl. Mater. Interfaces 2016, 8, 1351–1359.
Zhao, L.; Gao, M. M.; Yue, W. B.; Jiang, Y.; Wang, Y.; Ren, Y.; Hu, F. Q. Sandwich-structured graphene-Fe3O4@carbon nanocomposites for high-performance lithium-ion batteries. ACS Appl. Mater. Interfaces 2015, 7, 9709–9715.