AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Facile synthesis of porous germanium-iron bimetal oxide nanowires as anode materials for lithium-ion batteries

Xiongwu Zhong1Huijuan Huan1Xiaowu Liu1Yan Yu1,2,3( )
Key Laboratory of Materials for Energy ConversionChinese Academy of Sciences (CAS)Department of Materials Science and EngineeringUniversity of Science and Technology of ChinaHefei230026China
Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education)Nankai UniversityTianjin300071China
State Key Laboratory of Fire ScienceUniversity of Science and Technology of ChinaHefei230026China
Show Author Information

Graphical Abstract

Abstract

Germanium-based oxide has been found to be a promising high-capacity anode material for lithium-ion batteries (LIBs). However, it exhibits poor electrochemical performance because of the drastic volume change during cycling. Herein, we designed porous Ge-Fe bimetal oxide nanowires (Ge-Fe-Ox-700 NWs) by a large-scale and facile solvothermal reaction. When used as the anode material for LIBs, these Ge-Fe-Ox-700 NWs exhibited superior electrochemical performance (~ 1, 120 mAh·g-1 at a current density of 100 mA·g-1) and good cycling performance (~ 750 mAh·g-1 after 50 cycles at a current density of 100 mA·g-1). The improved performance is due to the small NW diameter, which allows for better accommodation of the drastic volume changes and zero-dimensional nanoparticles, which shorten the diffusion length of ions and electrons.

Electronic Supplementary Material

Download File(s)
12274_2017_1938_MOESM1_ESM.pdf (2.1 MB)

References

1

Bruce, P. G.; Scrosati, B.; Tarascon, J. M. Nanomaterials for rechargeable lithium batteries. Angew. Chem., Int. Ed. 2008, 47, 2930–2946.

2

Chae, C.; Noh, H. J.; Lee, J. K.; Scrosati, B.; Sun, Y. K. A high-energy Li-ion battery using a silicon-based anode and a nano-structured layered composite cathode. Adv. Funct. Mater. 2014, 24, 3036–3042.

3

Wu, Z. S.; Ren, W. C.; Xu, L.; Li, F.; Cheng, H. M. Doped graphene sheets as anode materials with superhigh rate and large capacity for lithium ion batteries. ACS Nano 2011, 5, 5463–5471.

4

Zheng, F. C.; Yang, Y.; Chen, Q. W. High lithium anodic performance of highly nitrogen-doped porous carbon prepared from a metal-organic framework. Nat. Commun. 2014, 5, 5261.

5

Flandrois, S.; Simon, B. Carbon materials for lithium-ion rechargeable batteries. Carbon 1999, 37, 165–180.

6

Chan, C. K.; Peng, H. L.; Liu, G.; McIlwrath, K.; Zhang, X. F.; Huggins, R. A.; Cui, Y. High-performance lithium battery anodes using silicon nanowires. Nat. Nanotechnol. 2008, 3, 31–35.

7

Cui, G. L.; Gu, L.; Zhi, L. J.; Kaskhedikar, N.; van Aken, P. A.; Müllen, K.; Maier, J. A germanium–carbon nanocomposite material for lithium batteries. Adv. Mater. 2008, 20, 3079–3083.

8

Wang, X. L.; Han, W. Q.; Chen, H. Y.; Bai, J. M.; Tyson, T. A.; Yu, X. Q.; Wang, X. J.; Yang, X. Q. Amorphous hierarchical porous GeOx as high-capacity anodes for Li ion batteries with very long cycling life. J. Am. Chem. Soc. 2011, 133, 20692–20695.

9

Lv, D. P.; Gordin, M. L.; Yi, R.; Xu, T.; Song, J. X.; Jiang, Y. B.; Choi, D.; Wang, D. H. GeOx/reduced graphene oxide composite as an anode for Li-ion batteries: Enhanced capacity via reversible utilization of Li2O along with improved rate performance. Adv. Funct. Mater. 2014, 24, 1059–1066.

10

Fuller, C. S.; Severiens, J. C. Mobility of impurity ions in germanium and silicon. Phys. Rev. 1954, 96, 21–24.

11

Graetz, J.; Ahn, C. C.; Yazami, R.; Fultz, B. Nanocrystalline and thin film germanium electrodes with high lithium capacity and high rate capabilities. J. Electrochem. Soc. 2004, 151, A698–A702.

12

Murugesan, S.; Harris, J. T.; Korgel, B. A.; Stevenson, K. J. Copper-coated amorphous silicon particles as an anode material for lithium-ion batteries. Chem. Mater. 2012, 24, 1306–1315.

13

Lee, H.; Cho, J. Sn78Ge22@carbon core-shell nanowires as fast and high-capacity lithium storage media. Nano Lett. 2007, 7, 2638–2641.

14

Ren, J. G.; Wu, Q. H.; Tang, H.; Hong, G.; Zhang, W. J.; Lee, S. T. Germanium-graphene composite anode for highenergy lithium batteries with long cycle life. J. Mater. Chem. A 2013, 1, 1821–1826.

15

Abel, P. R.; Lin, Y. M.; de Souza, T.; Chou, C. Y.; Gupta, A.; Goodenough, J. B.; Hwang, G. S.; Heller, A.; Mullins, C. B. Nanocolumnar germanium thin films as a high-rate sodium-ion battery anode material. J. Phys. Chem. C 2013, 117, 18885–18890.

16

Li, L.; Seng, K. H.; Feng, C. Q.; Liu, H. K.; Guo, Z. P. Synthesis of hollow GeO2 nanostructures, transformation into Ge@C, and lithium storage properties. J. Mater. Chem. A 2013, 1, 7666–7672.

17

Park, M. H.; Cho, Y.; Kim, K.; Kim, J.; Liu, M. L.; Cho, J. Germanium nanotubes prepared by using the kirkendall effect as anodes for high-rate lithium batteries. Angew. Chem., Int. Ed. 2011, 123, 9821–9824.

18

Yang, L. C.; Gao, Q. S.; Li, L.; Tang, Y.; Wu, Y. P. Mesoporous germanium as anode material of high capacity and good cycling prepared by a mechanochemical reaction. Electrochem. Commun. 2010, 12, 418–421.

19

Xue, D. J.; Xin, S.; Yan, Y.; Jiang, K. C.; Yin, Y. X.; Guo, Y. G.; Wan, L. J. Improving the electrode performance of Ge through Ge@C core-shell nanoparticles and graphene networks. J. Amer. Chem. Soc. 2012, 134, 2512–2515.

20

Feng, J. K.; Lai, M. O.; Lu, L. Zn2GeO4 Nanorods synthesized by low-temperature hydrothermal growth for high-capacity anode of lithium battery. Electrochem. Commun. 2011, 13, 287–289.

21

Yi, R.; Feng, J. K.; Lv, D. P.; Gordin, M. L.; Chen, S. R.; Choi, D.; Wang, D. H. Amorphous Zn2GeO4 nanoparticles as anodes with high reversible capacity and long cycling life for Li-ion batteries. Nano Energy 2013, 2, 498–504.

22

Yan, Y.; Du, F. H.; Shen, X. P.; Ji, Z. Y.; Zhou, H.; Zhu, G. X. Porous SnO2-Fe2O3 nanocubes with improved electrochemical performance for lithium ion batteries. Dalton Trans. 2014, 43, 17544–17550.

23

Zhou, M. J.; Gordin, M. L.; Chen, S. R.; Xu, T.; Song, J. X.; Lv, D. P.; Wang, D. H. Enhanced performance of SiO/Fe2O3 composite as an anode for rechargeable Li-ion batteries. Electrochem. Commun. 2013, 28, 79–82.

24

Gao, Q. S.; Chen, P.; Zhang, Y. H.; Tang, Y. Synthesis and characterization of organic-inorganic hybrid GeOx/ ethylenediamine nanowires. Adv. Mater. 2008, 20, 1837–1842.

25

Yao, W. T.; Yu, S. H.; Wu, Q. S. From mesostructured wurtzite ZnS-nanowire/amine nanocomposites to ZnS nanowires exhibiting quantum size effects: A mild-solution chemistry approach. Adv. Funct. Mater. 2007, 17, 623–631.

26

Yu, L.; Zou, R. J.; Zhang, Z. Y.; Song, G. S.; Chen, Z. G.; Yang, J. M.; Hu, J. Q. A Zn2GeO4-ethylenediamine hybrid nanoribbon membrane as a recyclable adsorbent for the highly efficient removal of heavy metals from contaminated water. Chem. Commun. 2011, 47, 10719–10721.

27

Na, Z. L.; Huang, G.; Liang, F.; Yin, D. M.; Wang, L. M. A core-shell Fe/Fe2O3 nanowire as a high-performance anode material for lithium-ion batteries. Chem. Europ. J. 2016, 22, 12081–12087.

28

Li, W. H.; Zeng, L. C.; Wu, Y.; Yu, Y. Nanostructured electrode materials for lithium-ion and sodium-ion batteries via electrospinning. Sci. China Mater. 2016, 59, 287–321.

29

Wu, Y.; Liu, X. W.; Yang, Z. Z.; Gu, L.; Yu, Y. Nitrogendoped ordered mesoporous anatase TiO2 nanofibers as anode materials for high performance sodium-ion batteries. Small 2016, 12, 3522–3529.

30

Sarkar, S.; Borah, R.; Santhosha, A. L.; Dhanya, R.; Narayana, C.; Bhattacharyya, A. J.; Peter, S. C. Heterostructure composites of rGO/GeO2/PANI with enhanced performance for Li ion battery anode material. J. Power Sources 2016, 306, 791–800.

31

Guo, W. X.; Sun, W. W.; Lv, L. P.; Kong, S. F.; Wang, Y. Microwave-assisted morphology evolution of Fe-based metal-organic frameworks and their derived Fe2O3 nanostructures for Li-ion storage. ACS Nano 2017, 11, 4198–4205.

32

Wei, W.; Jia, F. F.; Qu, P.; Huang, Z. N.; Wang, H.; Guo, L. Morphology memory but reconstructing crystal structure: Porous hexagonal GeO2 nanorods for rechargeable lithium-ion batteries. Nanoscale 2017, 9, 3961–3968.

33

Liu, L.; Zhang, H. J.; Mu, Y. P.; Yang, J.; Wang, Y. Porous iron cobaltate nanoneedles array on nickel foam as anode materials for lithium-ion batteries with enhanced electrochemical performance. ACS Appl. Mater. Interfaces 2016, 8, 1351–1359.

34

Zhao, L.; Gao, M. M.; Yue, W. B.; Jiang, Y.; Wang, Y.; Ren, Y.; Hu, F. Q. Sandwich-structured graphene-Fe3O4@carbon nanocomposites for high-performance lithium-ion batteries. ACS Appl. Mater. Interfaces 2015, 7, 9709–9715.

Nano Research
Pages 3702-3709
Cite this article:
Zhong X, Huan H, Liu X, et al. Facile synthesis of porous germanium-iron bimetal oxide nanowires as anode materials for lithium-ion batteries. Nano Research, 2018, 11(7): 3702-3709. https://doi.org/10.1007/s12274-017-1938-z

674

Views

31

Crossref

N/A

Web of Science

30

Scopus

0

CSCD

Altmetrics

Received: 24 September 2017
Revised: 14 November 2017
Accepted: 25 November 2017
Published: 02 August 2018
© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2017
Return