AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Ni-doped ZnCo2O4 atomic layers to boost the selectivity in solar-driven reduction of CO2

Katong LiuXiaodong LiLiang LiangJu WuXingchen JiaoJiaqi XuYongfu Sun( )Yi Xie( )
Hefei National Laboratory for Physical Sciences at MicroscaleCAS Center for Excellence in NanoscienceUniversity of Science and Technology of ChinaHefei230026China
Show Author Information

Graphical Abstract

Abstract

Regulating the selectivity of CO2 photoreduction is particularly challenging. Herein, we propose ideal models of atomic layers with/without element doping to investigate the effect of doping engineering to tune the selectivity of CO2 photoreduction. Prototypical ZnCo2O4 atomic layers with/without Ni-doping were first synthesized. Density functional theory calculations reveal that introducing Ni atoms creates several new energy levels and increases the density-of-states at the conduction band minimum. Synchrotron radiation photoemission spectroscopy demonstrates that the band structures are suitable for CO2 photoreduction, while the surface photovoltage spectra demonstrate that Ni doping increases the carrier separation efficiency. In situ diffuse reflectance Fourier transform infrared spectra disclose that the CO2·- radical is the main intermediate, while temperature-programed desorption curves reveal that the ZnCo2O4 atomic layers with/without Ni doping favor the respective CO and CH4 desorption. The Ni-doped ZnCo2O4 atomic layers exhibit a 3.5-time higher CO selectivity than the ZnCo2O4 atomic layers. This work establishes a clear correlation between elemental doping and selectivity regulation for CO2 photoreduction, opening new possibilities for tailoring solar-driven photocatalytic behaviors.

Electronic Supplementary Material

Download File(s)
12274_2017_1943_MOESM1_ESM.pdf (2.8 MB)

References

1

Lei, F. C.; Liu, W.; Sun, Y. F.; Xu, J. Q.; Liu, K. T.; Liang, L.; Yao, T.; Pan, B. C.; Wei, S. Q.; Xie, Y. Metallic tin quantum sheets confined in graphene toward highefficiency carbon dioxide electroreduction. Nat. Commun. 2016, 7, 12697.

2

Gao, S.; Lin, Y.; Jiao, X. C.; Sun, Y. F.; Luo, Q. Q.; Zhang, W. H.; Li, D. Q.; Yang, J. L.; Xie, Y. Partially oxidized atomic cobalt layers for carbon dioxide electroreduction to liquid fuel. Nature 2016, 529, 68–71.

3

Liang, L.; Lei, F. C.; Gao, S.; Sun, Y. F.; Jiao, X. C.; Wu, J.; Qamar, S.; Xie, Y. Single unit cell bismuth tungstate layers realizing robust solar CO2 reduction to methanol. Angew. Chem. , Int. Ed. 2015, 54, 13971–13974.

4

Xu, J. Q.; Li, X. D.; Liu, W.; Sun, Y. F.; Ju, Z. Y.; Yao, T.; Wang, C. M.; Ju, H. X.; Zhu, J. F.; Wei, S. Q. et al. Carbon dioxide electroreduction into syngas boosted by a partially delocalized charge in molybdenum sulfide selenide alloy monolayers. Angew. Chem., Int. Ed. 2017, 56, 9121–9125.

5

Qiu, Q. Q.; Li, S.; Jiang, J. J.; Wang, D. J.; Lin, Y. H.; Xie, T. F. Improved electron transfer between TiO2 and FTO interface by N-doped anatase TiO2 nanowires and its applications in quantum dot-sensitized solar cells. J. Phys. Chem. C 2017, 121, 21560–21570.

6

Qamar, S.; Lei, F. C.; Liang, L.; Gao, S.; Liu, K. T.; Sun, Y. F.; Ni, W. X.; Xie, Y. Ultrathin TiO2 flakes optimizing solar light driven CO2 reduction. Nano Energy 2016, 26, 692–698.

7

Li, H. Y.; Wang, D. J.; Fan, H. M.; Jiang, T. F.; Li, X. L.; Xie, T. F. Synthesis of ordered multivalent Mn-TiO2 nanospheres with tunable size: A high performance visiblelight photocatalyst. Nano Res. 2011, 4, 460–469.

8

Jiang, T. F.; Xie, T. F.; Zhang, Y.; Chen, L. P.; Peng, L. L.; Li, H. Y.; Wang, D. J. Photoinduced charge transfer in ZnO/Cu2O heterostructure films studied by surface photovoltage technique. Phys. Chem. Chem. Phys. 2010, 12, 15476–15481.

9

Fletcher, C.; Jiang, Y. J.; Sun, C. H.; Amal, R. Morphological evolution and electronic alteration of ZnO nanomaterials induced by Ni/Fe co-doping. Nanoscale 2014, 6, 7312–7318.

10

Ong, W. -J.; Tan, L. -L.; Chai, S. -P.; Yong, S. -T.; Mohamed, A. R. Self-assembly of nitrogen-doped TiO2 with exposed {001} facets on a graphene scaffold as photo-active hybrid nanostructures for reduction of carbon dioxide to methane. Nano Res. 2014, 7, 1528–1547.

11

Mao, J.; Li, K.; Peng, T. Y. Recent advances in the photocatalytic CO2 reduction over semiconductors. Catal. Sci. Technol. 2013, 3, 2481–2498.

12

Lei, F. C.; Sun, Y. F.; Liu, K. T.; Gao, S.; Liang, L.; Pan, B. C.; Xie, Y. Oxygen vacancies confined in ultrathin indium oxide porous sheets for promoted visible-light water splitting. J. Am. Chem. Soc. 2014, 136, 6826–6829.

13

Liu, Y. W.; Xiao, C.; Li, Z.; Xie, Y. Vacancy engineering for tuning electron and phonon structures of two-dimensional materials. Adv. Energy Mater. 2016, 6, 1600436.

14

Liu, K. T.; Zhang, W. S.; Lei, F. C.; Liang, L.; Gu, B. C.; Sun, Y. F.; Ye, B. J.; Ni, W. X.; Xie, Y. Nitrogen-doping induced oxygen divacancies in freestanding molybdenum trioxide single-layers boosting electrocatalytic hydrogen evolution. Nano Energy 2016, 30, 810–817.

15

Sato, S.; Morikawa, T.; Saeki, S.; Kajino, T.; Motohiro, T. Visible-light-induced selective CO2 reduction utilizing a ruthenium complex electrocatalyst linked to a p-type nitrogen-doped Ta2O5 semiconductor. Angew. Chem., Int. Ed. 2010, 49, 5101–5105.

16

Teramura, K.; Wang, Z.; Hosokawa, S.; Sakata, Y.; Tanaka, T. A doping technique that suppresses undesirable H2 evolution derived from overall water splitting in the highly selective photocatalytic conversion of CO2 in and by water. Chemistry 2014, 20, 9906–9909.

17

Wang, S.; Ding, Z. X.; Wang, X. C. A stable ZnCo2O4 cocatalyst for photocatalytic CO2 reduction. Chem. Commun. 2015, 51, 1517–1519.

18

Zhu, Y. Q.; Cao, C. B.; Zhang, J. T.; Xu, X. Y. Twodimensional ultrathin ZnCo2O4 nanosheets: General formation and lithium storage application. J. Mater. Chem. A 2015, 3, 9556–9564.

19

Surendranath Y.; Kanan M. W.; Nocera D. G. Mechanistic studies of the oxygen evolution reaction by a cobalt-phosphate catalyst at neutral pH. J. Am. Chem. Soc. 2010, 132, 16501–16509.

20

Perdew J. P.; Burke K.; Ernzerhof M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 3865–3868.

21

Shek, C. H.; Lai, J. K. L.; Lin, G. M. Investigation of interface defects in nanocrystalline SnO2 by positron annihilation. J. Phys. Chem. Solids 1999, 60, 189–193.

22

Jiao, X. C.; Chen, Z. W.; Li, X. D.; Sun, Y. F.; Gao, S.; Yan, W. S.; Wang, C. M.; Zhang, Q.; Lin, Y.; Luo, Y. et al. Defect-mediated electron–hole separation in one-unit-cell ZnIn2S4 layers for boosted solar-driven CO2 reduction. J. Am. Chem. Soc. 2017, 139, 7586–7594.

23

Iizuka, K.; Wato, T.; Miseki, Y.; Saito, K.; Kudo, A. Photocatalytic reduction of carbon dioxide over Ag cocatalyst-loaded AlA4Ti4O15 (A = Ca, Sr, and Ba) using water as a reducing reagent. J. Am. Chem. Soc. 2011, 133, 20863–20868.

24

Lei, F. C.; Zhang, L.; Sun, Y. F.; Liang, L.; Liu, K. T.; Xu, J. Q.; Zhang, Q.; Pan, B. C.; Luo, Y.; Xie, Y. Atomiclayerconfined doping for atomic-level insights into visiblelight water splitting. Angew. Chem., Int. Ed. 2015, 54, 9266–9270.

25

Balti, I.; Mezni, A.; Dakhlaoui-Omrani, A.; Léone, P.; Viana, B.; Brinza, O.; Smiri, L. -S.; Jouini, N. Comparative study of Niand Co-substituted ZnO nanoparticles: Synthesis, optical, and magnetic properties. J. Phys. Chem. C 2011, 115, 15758–15766.

26

Liu, Y. M.; Chen, S.; Quan, X.; Yu, H. T. Efficient electrochemical reduction of carbon dioxide to acetate on nitrogen-doped nanodiamond. J. Am. Chem. Soc. 2015, 137, 11631–11636.

27

Neaţu, Ș.; Maciá-Agulló, J. A.; Concepción, P.; Garcia, H. Gold-copper nanoalloys supported on TiO2 as photocatalysts for CO2 reduction by water. J. Am. Chem. Soc. 2014, 136, 15969–15976.

28

Grabow, L. C.; Mavrikakis, M. Mechanism of methanol synthesis on Cu through CO2 and CO hydrogenation. ACS Catal. 2011, 1, 365–384.

29

Wilcox, E. M.; Roberts, G. W.; Spivey, J. J. Direct catalytic formation of acetic acid from CO2 and methane. Catal. Today 2003, 88, 83–90.

30

Cao, Y.; Li, H. R.; Zhang, J. P.; Shi, L. Y.; Zhang, D. S. Promotional effects of rare earth elements (Sc, Y, Ce, and Pr) on nimgal catalysts for dry reforming of methane. RSC Adv. 2016, 6, 112215–112225.

31

Wang, W.; Gong, J. L. Methanation of carbon dioxide: An overview. Front. Chem. Sci. Eng. 2011, 5, 2–10.

32

Zhang, L.; Zhao, Z. J.; Gong, J. L. Nanostructured materials for heterogeneous electrocatalytic CO2 reduction and their related reaction mechanisms. Angew. Chem., Int. Ed. 2017, 56, 11326–11353.

33

Zhang, L.; Wang, W. Z.; Jiang, D.; Gao, E. P.; Sun, S. M. Photoreduction of CO2 on BiOCl nanoplates with the assistance of photoinduced oxygen vacancies. Nano Res. 2015, 8, 821–831.

Nano Research
Pages 2897-2908
Cite this article:
Liu K, Li X, Liang L, et al. Ni-doped ZnCo2O4 atomic layers to boost the selectivity in solar-driven reduction of CO2. Nano Research, 2018, 11(6): 2897-2908. https://doi.org/10.1007/s12274-017-1943-2
Part of a topical collection:

1083

Views

59

Crossref

N/A

Web of Science

56

Scopus

3

CSCD

Altmetrics

Received: 31 October 2017
Revised: 20 November 2017
Accepted: 29 November 2017
Published: 22 May 2018
© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2017
Return