AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Large capacitance and fast polarization response of thin electrolyte dielectrics by spin coating for two-dimensional MoS2 devices

Wu ZanQiaochu ZhangHu XuFuyou LiaoZhongxun GuoJianan DengJing Wan( )Hao ZhuLin ChenQingqing SunShijin DingPeng ZhouWenzhong Bao( )David Wei Zhang
State Key Laboratory of ASIC and SystemFudan UniversityShanghai200433China
Show Author Information

Graphical Abstract

Abstract

A spin-coating method was applied to obtain thinner and smoother PEO/LiClO4 polymer electrolyte films (EFs) with a lower level of crystallization than those obtained using a drop-casting method. When the applied frequency was as high as 10 kHz, the specific capacitance of such EFs with thicknesses of 1.5 μm was on the order of 1 μF·cm-2, a value larger than most of the previously reported results achieved from the same material. We then combined the thin EFs with two-dimensional (2D) materials to fabricate a MoS2 transistor with a top gate right above the channel, defined by a shadow-mask method, and an inverter device. This transistor showed excellent static characteristics and the inverter device showed excellent switching performance at 100 Hz, which indicates a fast polarization response of the thin EFs. Such device architecture is suitable for future low power and flexible electronics based on 2D materials.

Electronic Supplementary Material

Download File(s)
12274_2017_1945_MOESM1_ESM.pdf (496.6 KB)

References

1

Panzer, M. J.; Frisbie, C. D. Exploiting ionic coupling in electronic devices: Electrolyte-gated organic field-effect transistors. Adv. Mater. 2008, 20, 3177–3180.

2

Sun, D. M.; Liu, C.; Ren, W. C.; Cheng, H. M. A review of carbon nanotube- and graphene-based flexible thin-film transistors. Small 2013, 9, 1188–1205.

3

Cho, J. H.; Lee, J.; He, Y.; Kim, B. S.; Lodge, T. P.; Frisbie, C. D. High-capacitance ion gel gate dielectrics with faster polarization response times for organic thin film transistors. Adv. Mater. 2008, 20, 686–690.

4

Zhou, C. J.; Wang, X. S.; Raju, S.; Lin, Z. Y.; Villaroman, D.; Huang, B. L.; Chan, H. L. W.; Chan, M. S.; Chai, Y. Low voltage and high ON/OFF ratio field-effect transistors based on CVD MoS2 and ultra high-k gate dielectric PZT. Nanoscale 2015, 7, 8695–8700.

5

Das, A.; Pisana, S.; Chakraborty, B.; Piscanec, S.; Saha, S. K.; Waghmare, U. V.; Novoselov, K. S.; Krishnamurthy, H. R.; Geim, A. K.; Ferrari, A. C. et al. Monitoring dopants by Raman scattering in an electrochemically top-gated graphene transistor. Nat. Nano 2008, 3, 210–215.

6

Zhang, Y. J.; Ye, J. T.; Matsuhashi, Y.; Iwasa, Y. Ambipolar MoS2 thin flake transistors. Nano Lett. 2012, 12, 1136–1140.

7

Huang, J. K.; Pu, J.; Hsu, C. L.; Chiu, M. H.; Juang, Z. Y.; Chang, Y. H.; Chang, W. H.; Iwasa, Y.; Takenobu, T.; Li, L. J. Large-area synthesis of highly crystalline WSe2 monolayers and device applications. ACS Nano 2014, 8, 923–930.

8

Kim, B. J.; Jang, H.; Lee, S. K.; Hong, B. H.; Ahn, J. H.; Cho, J. H. High-performance flexible graphene field effect transistors with ion gel gate dielectrics. Nano Lett. 2010, 10, 3464–3466.

9

Choi, Y.; Kang, J.; Jariwala, D.; Kang, M. S.; Marks, T. J.; Hersam, M. C.; Cho, J. H. Low-voltage complementary electronics from ion-gel-gated vertical van der Waals heterostructures. Adv. Mater. 2016, 28, 3742–3748.

10

Yu, S.; Tsutomu, N.; Yoshihiro, I. Gate-induced superconductivity in two-dimensional atomic crystals. Supercond. Sci. Technol. 2016, 29, 093001.

11

Chu, L. Q.; Schmidt, H.; Pu, J.; Wang, S. F.; Özyilmaz, B.; Takenobu, T.; Eda, G. Charge transport in ion-gated mono-, bi-, and trilayer MoS2 field effect transistors. Sci. Rep. 2014, 4, 7293.

12

Lee, S. K.; Kim, B. J.; Jang, H.; Yoon, S. C.; Lee, C.; Hong, B. H.; Rogers, J. A.; Cho, J. H.; Ahn, J. H. Stretchable graphene transistors with printed dielectrics and gate electrodes. Nano Lett. 2011, 11, 4642–4646.

13

Chang, Y. H.; Zhang, W. J.; Zhu, Y. H.; Han, Y.; Pu, J.; Chang, J. K.; Hsu, W. T.; Huang, J. K.; Hsu, C. L.; Chiu, M. H. et al. Monolayer MoSe2 grown by chemical vapor deposition for fast photodetection. ACS Nano 2014, 8, 8582–8590.

14

Xu, H. L.; Fathipour, S.; Kinder, E. W.; Seabaugh, A. C.; Fullerton-Shirey, S. K. Reconfigurable ion gating of 2H-MoTe2 field-effect transistors using poly(ethylene oxide)-CsClO4 solid polymer electrolyte. ACS Nano 2015, 9, 4900–4910.

15

Wang, X.; Zhang, T. B.; Yang, W.; Zhu, H.; Chen, L.; Sun, Q. Q.; Zhang, D. W. Improved integration of ultra-thin high-k dielectrics in few-layer MoS2 fet by remote forming gas plasma pretreatment. Appl. Phys. Lett. 2017, 110, 053110.

16

Lin, Z.; McCreary, A.; Briggs, N.; Subramanian, S.; Zhang, K.; Sun, Y. F.; Li, X. F.; Borys, N. J.; Yuan, H. T.; Fullerton-Shirey, S. K. et al. 2D materials advances: From large scale synthesis and controlled heterostructures to improved characterization techniques, defects and applications. 2D Mater. 2016, 3, 042001.

17

Cho, J. H.; Lee, J.; Xia, Y.; Kim, B.; He, Y. Y.; Renn, M. J.; Lodge, T. P.; Frisbie, C. D. Printable ion-gel gate dielectrics for low-voltage polymer thin-film transistors on plastic. Nat. Mater. 2008, 7, 900–906.

18

Pu, J.; Funahashi, K.; Chen, C. H.; Li, M. Y.; Li, L. J.; Takenobu, T. Highly flexible and high-performance complementary inverters of large-area transition metal dichalcogenide monolayers. Adv. Mater. 2016, 28, 4111–4119.

19

Xia, Y.; Zhang, W.; Ha, M. J.; Cho, J. H.; Renn, M. J.; Kim, C. H.; Frisbie, C. D. Printed sub-2 V gel-electrolyte-gated polymer transistors and circuits. Adv. Funct. Mater. 2010, 20, 587–594.

20

Kelly, A. G.; Hallam, T.; Backes, C.; Harvey, A.; Esmaeily, A. S.; Godwin, I.; Coelho, J.; Nicolosi, V.; Lauth, J.; Kulkarni, A. et al. All-printed thin-film transistors from networks of liquid-exfoliated nanosheets. Science 2017, 356, 69–73.

21

Kim, S. H.; Hong, K.; Xie, W.; Lee, K. H.; Zhang, S. P.; Lodge, T. P.; Frisbie, C. D. Electrolyte-gated transistors for organic and printed electronics. Adv. Mater. 2013, 25, 1822–1846.

22

Ye, J. T.; Zhang, Y. J.; Akashi, R.; Bahramy, M. S.; Arita, R.; Iwasa, Y. Superconducting dome in a gate-tuned band insulator. Science 2012, 338, 1193–1196.

23

Lin, M. W.; Liu, L. Z.; Lan, Q.; Tan, X. B.; Dhindsa, K. S.; Zeng, P.; Naik, V. M.; Cheng, M. M. C.; Zhou, Z. X. Mobility enhancement and highly efficient gating of monolayer MoS2 transistors with polymer electrolyte. J. Phys. D: Appl. Phys. 2012, 45, 345102.

24

Bonaccorso, F.; Bartolotta, A.; Coleman, J. N.; Backes, C. 2D-crystal-based functional inks. Adv. Mater. 2016, 28, 6136–6166.

25

Panzer, M. J.; Frisbie, C. D. High carrier density and metallic conductivity in poly(3-hexylthiophene) achieved by electrostatic charge injection. Adv. Funct. Mater. 2006, 16, 1051–1056.

26

Conway, B. E. Electrochemical Supercapacitors: Scientific Fundamentals and Technological Applications; Springer: Boston, MA, 1999.

27

Wang, D. W.; Wang, Q.; Javey, A.; Tu, R.; Dai, H. J.; Kim, H.; McIntyre, P. C.; Krishnamohan, T.; Saraswat, K. C. Germanium nanowire field-effect transistors with SiO2 and high-κ HfO2 gate dielectrics. Appl. Phys. Lett. 2003, 83, 2432–2434.

28

Lee, J.; Panzer, M. J.; He, Y. Y.; Lodge, T. P.; Frisbie, C. D. Ion gel gated polymer thin-film transistors. J. Am. Chem. Soc. 2007, 129, 4532–4533.

29

Berthier, C.; Gorecki, W.; Minier, M.; Armand, M. B.; Chabagno, J. M.; Rigaud, P. Microscopic investigation of ionic conductivity in alkali metal salts-poly(ethylene oxide) adducts. Solid State Ionics 1983, 11, 91–95.

30

Das, D.; Langrish, T. A. G. Combined crystallization and drying in a pilot-scale spray dryer. Drying Technol. 2012, 30, 998–1007.

31

Bao, W. Z.; Liu, G.; Zhao, Z.; Zhang, H.; Yan, D.; Deshpande, A.; LeRoy, B.; Lau, C. N. Lithography-free fabrication of high quality substrate-supported and freestanding graphene devices. Nano Res. 2010, 3, 98–102.

32

Wang, L.; Meric, I.; Huang, P. Y.; Gao, Q.; Gao, Y.; Tran, H.; Taniguchi, T.; Watanabe, K.; Campos, L. M.; Muller, D. A. et al. One-dimensional electrical contact to a twodimensional material. Science 2013, 342, 614–617.

33

Yu, Z. H.; Pan, Y. M.; Shen, Y. T.; Wang, Z. L.; Ong, Z. Y.; Xu, T.; Xin, R.; Pan, L. J.; Wang, B. G.; Sun, L. T. et al. Towards intrinsic charge transport in monolayer molybdenum disulfide by defect and interface engineering. Nat. Commun. 2014, 5, 5290.

34

Yu, Z. H.; Ong, Z. Y.; Li, S. L.; Xu, J. -B.; Zhang, G.; Zhang, Y. W.; Shi, Y.; Wang, X. A. Analyzing the carrier mobility in transition-metal dichalcogenide MoS2 field-effect transistors. Adv. Funct. Mater. 2017, 27, 1604093.

35

Radisavljevic, B.; Whitwick, M. B.; Kis, A. Integrated circuits and logic operations based on single-layer MoS2. ACS Nano 2011, 5, 9934–9938.

36

Zhou, C. J.; Zhao, Y. D.; Raju, S.; Wang, Y.; Lin, Z. Y.; Chan, M. S.; Chai, Y. Carrier type control of WSe2 fieldeffect transistors by thickness modulation and MoO3 layer doping. Adv. Funct. Mater. 2016, 26, 4223–4230.

37

Sachid, A. B.; Tosun, M.; Desai, S. B.; Hsu, C. Y.; Lien, D. H.; Madhvapathy, S. R.; Chen, Y. Z.; Hettick, M.; Kang, J. S.; Zeng, Y. P. et al. Monolithic 3D CMOS using layered semiconductors. Adv. Mater. 2016, 28, 2547–2554.

38

Rabaey, J. M.; Chandrakasan, A.; Nikolic, B. Digital Integrated Circuits: A Design Perspective. Prentice Hall: New York, 2003.

Nano Research
Pages 3739-3745
Cite this article:
Zan W, Zhang Q, Xu H, et al. Large capacitance and fast polarization response of thin electrolyte dielectrics by spin coating for two-dimensional MoS2 devices. Nano Research, 2018, 11(7): 3739-3745. https://doi.org/10.1007/s12274-017-1945-0

740

Views

12

Crossref

N/A

Web of Science

12

Scopus

1

CSCD

Altmetrics

Received: 11 September 2017
Revised: 02 November 2017
Accepted: 29 November 2017
Published: 02 August 2018
© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2017
Return