Article Link
Collect
Submit Manuscript
Show Outline
Outline
Graphical Abstract
Abstract
Keywords
Electronic Supplementary Material
References
Show full outline
Hide outline
Research Article

Calcium carbonate-doxorubicin@silica-indocyanine green nanospheres with photo-triggered drug delivery enhance cell killing in drug-resistant breast cancer cells

Wei Wang1,§Yang Zhao1,§Bei-Bei Yan1Liang Dong1Yang Lu2Shu-Hong Yu1 ()
Division of Nanomaterials & ChemistryHefei National Research Center for Physical Sciences at the MicroscaleCollaborative Innovation Center of Suzhou Nano Science and TechnologyDepartment of ChemistryCAS Centre for Excellence in NanoscienceHefei Science Centre of CASUniversity of Science and Technology of ChinaHefei230026China
School of Chemistry and Chemical EngineeringHefei University of TechnologyHefei230009China

§ Wei Wang and Yang Zhao contributed equally to this work.

Show Author Information

Graphical Abstract

View original image Download original image

Abstract

Calcium carbonate-doxorubicin@silica-indocyanine green nanospheres with high uniformity and monodispersity were designed and synthesized, in order to provide a photo-triggered strategy for drug-resistant cancer therapy. Under near-infrared laser irradiation, the nanospheres transformed laser power into local heat and reactive oxygen species via the connected indocyanine green molecule, thus exhibiting photothermal and photodynamic effects. Moreover, the photo-triggered drug release based on calcium-assisted silica degradation was observed, endowing the nanospheres with chemotherapeutic properties. Finally, combined therapeutic effects against drug-resistant human breast cancer cells were successfully obtained. These photo-triggered materials based on calcium carbonate could provide a promising platform for enhanced multimodal cancer therapies.

Electronic Supplementary Material

Download File(s)
12274_2017_1950_MOESM1_ESM.pdf (2.2 MB)

References

1

Heaney, R. P.; Rafferty, K. Carbonated beverages and urinary calcium excretion. Am. J. Clin. Nutr. 2001, 74, 343–347.

2

Smith, J. M. Adverse reactions to food and drug additives. Eur. J. Clin. Nutr. 1991, 45 Suppl 1, 17–21.

3

Espínola, F.; Moya, M.; Fernández, D. G.; Castro, E. Improved extraction of virgin olive oil using calcium carbonate as coadjuvant extractant. J. Food Eng. 2009, 92, 112–118.

4

Brigger, I.; Dubernet, C.; Couvreur, P. Nanoparticles in cancer therapy and diagnosis. Adv. Drug Deliv. Rev. 2002, 54, 631–651.

5

Du, X. W.; Zhou, J.; Wu, L. H.; Sun, S. H.; Xu, B. Enzymatic transformation of phosphate decorated magnetic nanoparticles for selectively sorting and inhibiting cancer cells. Bioconjugate Chem. 2014, 25, 2129–2133.

6

Du, X. W.; Zhou, J.; Wang, J. Q.; Zhou, R.; Xu, B. Chirality controls reaction-diffusion of nanoparticles for inhibiting cancer cells. Chemnanomat 2017, 3, 17–21.

7

Zhao, Y.; Lu, Y.; Hu, Y.; Li, J. P.; Dong, L.; Lin, L. N.; Yu, S. H. Synthesis of superparamagnetic CaCO3 mesocrystals for multistage delivery in cancer therapy. Small 2010, 6, 2436–42.

8

Boyjoo, Y.; Pareek, V. K.; Liu, J. Synthesis of micro and nano-sized calcium carbonate particles and their applications. J. Mater. Chem. A 2014, 2, 14270–14288.

9

Kong, F.; Zhang, H. B.; Zhang, X.; Liu, D. F.; Chen, D.; Zhang, W. X.; Zhang, L. Y.; Santos, H. A.; Hai, M. T. Biodegradable photothermal and pH responsive calcium carbonate@phospholipid@acetalated dextran hybrid platform for advancing biomedical applications. Adv. Funct. Mater. 2016, 26, 6158–6169.

10

Wei, W.; Ma, G. H.; Hu, G.; Yu, D.; Mcleish, T.; Su, Z. G.; Shen, Z. Y. Preparation of hierarchical hollow CaCO3 particles and the application as anticancer drug carrier. J. Am. Chem. Soc. 2008, 130, 15808–15810.

11

Wang, J.; Chen, J. S.; Zong, J. Y.; Zhao, D.; Li, F.; Zhuo, R. X.; Cheng, S. X. Calcium carbonate/carboxymethyl chitosan hybrid microspheres and nanospheres for drug delivery. J. Phys. Chem. C 2010, 114, 18940–18945.

12

Richardson, J. J.; Maina, J. W.; Ejima, H.; Hu, M.; Guo, J. L.; Choy, M. Y.; Gunawan, S. T.; Lybaert, L.; Hagemeyer, C. E.; De Geest, B. G. et al. Versatile loading of diverse cargo into functional polymer capsules. Adv. Sci. 2015, 2, 1400007.

13

Richardson, J. J.; Choy, M. Y.; Guo, J. L.; Liang, K.; Alt, K.; Ping, Y.; Cui, J. W.; Law, L. S.; Hagemeyer, C. E.; Caruso, F. Polymer capsules for plaque-targeted in vivo delivery. Adv. Mater. 2016, 28, 7820.

14

Ju, Y.; Cui, J. W.; Sun, H. L.; Müllner, M.; Dai, Y. L.; Guo, J. L.; Bertleff-Zieschang, N.; Suma, T.; Richardson, J. J.; Caruso, F. Engineered metal-phenolic capsules show tunable targeted delivery to cancer cells. Biomacromolecules 2016, 17, 2268–2276.

15

Richardson, J. J.; Cui, J. W.; Björnmalm, M.; Braunger, J. A.; Ejima, H.; Caruso, F. Innovation in layer-by-layer assembly. Chem. Rev. 2016, 116, 14828–14867.

16

Som, A.; Raliya, R.; Tian, L. M.; Akers, W.; Ippolito, J. E.; Singamaneni, S.; Biswas, P.; Achilefu, S. Monodispersed calcium carbonate nanoparticles modulate local pH and inhibit tumor growth in vivo. Nanoscale 2016, 8, 12639–12647.

17

Chen, J. F.; Ding, H. M.; Wang, J. X.; Shao, L. Preparation and characterization of porous hollow silica nanoparticles for drug delivery application. Biomaterials 2004, 25, 723–727.

18

Volodkin, D. V.; von Klitzing, R.; Möhwald, H. Pure protein microspheres by calcium carbonate templating. Angew. Chem., Int. Ed. 2010, 49, 9258–9261.

19

Zhao, Y.; Lin, L. N.; Lu, Y.; Chen, S. F.; Dong, L.; Yu, S. H. Templating synthesis of preloaded doxorubicin in hollow mesoporous silica nanospheres for biomedical applications. Adv. Mater. 2010, 22, 5255–5259.

20

Zhao, Y.; Lin, L. N.; Lu, Y.; Gao, H. L.; Chen, S. F.; Yang, P.; Yu, S. H. Synthesis of tunable theranostic Fe3O4@mesoporous silica nanospheres for biomedical applications. Adv. Healthc. Mater. 2012, 1, 327–331.

21

Zhao, Y.; Luo, Z.; Li, M. H.; Qu, Q. Y.; Ma, X.; Yu, S. H.; Zhao, Y. L. A preloaded amorphous calcium carbonate/ doxorubicin@silica nanoreactor for pH-responsive delivery of an anticancer drug. Angew. Chem., Int. Ed. 2015, 54, 919–922.

22

Wang, W.; Zhao, Y.; Yang, S. -Y.; Wu, Q. -S.; Ju, Y. -M.; Yu, S. -H. Engineered doxorubicin-calcium@silica nanospheres with tunable degradability for controlled drug delivery. Inorg. Chem. Front. 2017, 4, 1135–1140.

23

Dong, Z. L.; Feng, L. Z.; Zhu, W. W.; Sun, X. Q.; Gao, M.; Zhao, H.; Chao, Y.; Liu, Z. CaCO3 nanoparticles as an ultra-sensitive tumor-pH-responsive nanoplatform enabling real-time drug release monitoring and cancer combination therapy. Biomaterials 2016, 110, 60–70.

24

Overgaard, J. Combined adriamycin and hyperthermia treatment of a murine mammary carcinoma in vivo. Cancer Res. 1976, 36, 3077–3081.

25

Mauceri, H. J.; Hanna, N. N.; Beckett, M. A.; Gorski, D. H.; Staba, M. J.; Stellato, K. A.; Bigelow, K.; Heimann, R.; Gately, S.; Dhanabal, M. et al. Combined effects of angiostatin and ionizing radiation in antitumour therapy. Nature 1998, 394, 287–291.

26

Liu, H. Y.; Chen, D.; Li, L. L.; Liu, T. L.; Tan, L. F.; Wu, X. L.; Tang, F. Q. Multifunctional gold nanoshells on silica nanorattles: A platform for the combination of photothermal therapy and chemotherapy with low systemic toxicity. Angew. Chem., Int. Ed. 2011, 50, 891–895.

27

Peng, J. J.; Zhao, L. Z.; Zhu, X. J.; Sun, Y.; Feng, W.; Gao, Y. H.; Wang, L. Y.; Li, F. Y. Hollow silica nanoparticles loaded with hydrophobic phthalocyanine for near-infrared photodynamic and photothermal combination therapy. Biomaterials 2013, 34, 7905–7912.

28

Liu, T.; Wang, C.; Gu, X.; Gong, H.; Cheng, L.; Shi, X. Z.; Feng, L. Z.; Sun, B. Q.; Liu, Z. Drug delivery with PEGylated MoS2 nano-sheets for combined photothermal and chemotherapy of cancer. Adv. Mater. 2014, 26, 3433–3440.

29

Song, X. R.; Wang, X. Y.; Yu, S. X.; Cao, J. B.; Li, S. H.; Li, J.; Liu, G.; Yang, H. H.; Chen, X. Y. Co9Se8 nanoplates as a new theranostic platform for photoacoustic/magnetic resonance dual-modal-imaging-guided chemo-photothermal combination therapy. Adv. Mater. 2015, 27, 3285–3291.

30

Zheng, M. B.; Yue, C. X.; Ma, Y. F.; Gong, P.; Zhao, P. F.; Zheng, C. F.; Sheng, Z. H.; Zhang, P. F.; Wang, Z. H.; Cai, L. T. Single-step assembly of DOX/ICG loaded lipid- polymer nanoparticles for highly effective chemo-photothermal combination therapy. ACS Nano 2013, 7, 2056–2067.

31

Jaque, D.; Martinez Maestro, L.; del Rosal, B.; Haro- Gonzalez, P.; Benayas, A.; Plaza, J. L.; Martín Rodríguez, E.; García Solé, J. Nanoparticles for photothermal therapies. Nanoscale 2014, 6, 9494–9530.

32

Cheng, L.; Wang, C.; Feng, L. Z.; Yang, K.; Liu, Z. Functional nanomaterials for phototherapies of cancer. Chem. Rev. 2014, 114, 10869–10939.

33

Shanmugam, V.; Selvakumar, S.; Yeh, C. -S. Near-infrared light-responsive nanomaterials in cancer therapeutics. Chem. Soc. Rev. 2014, 43, 6254–6287.

34

Zhang, W.; Guo, Z. Y.; Huang, D. Q.; Liu, Z. M.; Guo, X.; Zhong, H. Q. Synergistic effect of chemo-photothermal therapy using PEGylated graphene oxide. Biomaterials 2011, 32, 8555–8561.

35

Wang, L. M.; Lin, X. Y.; Wang, J.; Hu, Z. J.; Ji, Y. L.; Hou, S.; Zhao, Y. L.; Wu, X. C.; Chen, C. Y. Novel insights into combating cancer chemotherapy resistance using a plasmonic nanocarrier: Enhancing drug sensitiveness and accumulation simultaneously with localized mild photothermal stimulus of femtosecond pulsed laser. Adv. Funct. Mater. 2014, 24, 4229–4239.

36

Wang, L. M.; Sun, Q.; Wang, X.; Wen, T.; Yin, J. J.; Wang, P. Y.; Bai, R.; Zhang, X. Q.; Zhang, L. H.; Lu, A. H. et al. Using hollow carbon nanospheres as a light-induced free radical generator to overcome chemotherapy resistance. J. Am. Chem. Soc. 2015, 137, 1947–1955.

37

Wang, P. Y.; Wang, X.; Wang, L. M.; Hou, X. Y.; Liu, W.; Chen, C. Y. Interaction of gold nanoparticles with proteins and cells. Sci. Technol. Adv. Mater. 2015, 16, 034610.

38

Wang, L. M.; Chen, C. Y. Pathophysiologic mechanisms of biomedical nanomaterials. Toxicol. Appl. Pharmacol. 2016, 299, 30–40.

39

Balladur, V.; Theretz, A.; Mandrand, B. Determination of the main forces driving DNA oligonucleotide adsorption onto aminated silica wafers. J. Colloid Interface Sci. 1997, 194, 408–418.

40

Melzak, K. A.; Sherwood, C. S.; Turner, R. F. B.; Haynes, C. A. Driving forces for DNA adsorption to silica in perchlorate solutions. J. Colloid Interface Sci. 1996, 181, 635–644.

41

Parida, S. K.; Dash, S.; Patel, S.; Mishra, B. K. Adsorption of organic molecules on silica surface. Adv. Colloid Interface Sci. 2006, 121, 77–110.

42

Chou, T. C. Drug combination studies and their synergy quantification using the Chou–Talalay method. Cancer Res. 2010, 70, 440–446.

43

Khafif, A.; Schantz, S. P.; Chou, T. C.; Edelstein, D.; Sacks, P. G. Quantitation of chemopreventive synergism between (–)-epigallocatechin-3-gallate and curcumin in normal, premalignant and malignant human oral epithelial cells. Carcinogenesis 1998, 19, 419–424.

Nano Research
Pages 3385-3395
Cite this article:
Wang W, Zhao Y, Yan B-B, et al. Calcium carbonate-doxorubicin@silica-indocyanine green nanospheres with photo-triggered drug delivery enhance cell killing in drug-resistant breast cancer cells. Nano Research, 2018, 11(6): 3385-3395. https://doi.org/10.1007/s12274-017-1950-3
Part of a topical collection:
Metrics & Citations  
Article History
Copyright
Return