Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
Red phosphorus (RP) has attracted considerable attention as the anode for high-performance Na-ion batteries, owing to its low cost and high theoretical specific capacity of ~ 2, 600 mAh/g. In this study, a facile single-step flash-heat treatment was developed to achieve the reduction of graphene oxide (GO) and the simultaneous deposition of RP onto the reduced graphene oxide (rGO) sheets. The resulting RP/rGO composite was shown to be a promising candidate for overcoming the issues associated with the poor electronic conductivity and large volume variation of RP during cycling. The RP/rGO flexible film anode delivered an average capacity of 1, 625 mAh/g during 200 cycles at a charge/discharge current density of 1 A/g. Average charge capacities of 1, 786, 1, 597, 1, 324, and 679 mAh/g at 1, 2, 4, and 6 A/g current densities were obtained in the rate capability tests. Moreover, owing to the RP component, the RP/rGO film presented superior flame retardancy compared to an rGO film. This work thus introduces a highly accessible synthesis method to prepare flexible and safe RP anodes with superior electrochemical performance toward Na-ion storage.
Bruce, P. G.; Scrosati, B.; Tarascon, J. M. Nanomaterials for rechargeable lithium batteries. Angew. Chem., Int. Ed. 2008, 47, 2930-2946.
Li, H.; Wang, Z. X.; Chen, L. Q.; Huang, X. J. Research on advanced materials for Li-ion batteries. Adv. Mater. 2009, 21, 4593-4607.
Luo, W.; Shen, F.; Bommier, C.; Zhu, H. L.; Ji, X. L.; Hu, L. B. Na-ion battery anodes: Materials and electrochemistry. Acc. Chem. Res. 2016, 49, 231-240.
Kundu, D.; Talaie, E.; Duffort, V.; Nazar, L. F. The emerging chemistry of sodium ion batteries for electrochemical energy storage. Angew. Chem., Int. Ed. 2015, 54, 3431-3448.
Liu, Y. H.; Fang, X.; Ge, M. Y.; Rong, J. P.; Shen, C. F.; Zhang, A. Y.; Enaya, H. A.; Zhou, C. W. SnO2 coated carbon cloth with surface modification as Na-ion battery anode. Nano Energy 2015, 16, 399-407.
Liu, Y. H.; Fang, X.; Zhang, A. Y.; Shen, C. F.; Liu, Q. Z.; Enaya, H. A.; Zhou, C. W. Layered P2-Na2/3[Ni1/3Mn2/3]O2 as high-voltage cathode for sodium-ion batteries: The capacity decay mechanism and Al2O3 surface modification. Nano Energy 2016, 27, 27-34.
Yabuuchi, N.; Kubota, K.; Dahbi, M.; Komaba, S. Research development on sodium-ion batteries. Chem. Rev. 2014, 114, 11636-11682.
Peng, Q.; Hu, K. M.; Sa, B. S.; Zhou, J.; Wu, B.; Hou, X. H.; Sun, Z. M. Unexpected elastic isotropy in a black phosphorene/TiC2 van der Waals heterostructure with flexible Li-ion battery anode applications. Nano Res. 2017, 10, 3136-3150.
Xu, G. L.; Chen, Z. H.; Zhong, G. M.; Liu, Y. Z.; Yang, Y.; Ma, T. Y.; Ren, Y.; Zhou, X. B.; Wu, X. H.; Zhang, X. Y. et al. Nanostructured black phosphorus/ketjenblack-multiwalled carbon nanotubes composite as high performance anode material for sodium-ion batteries. Nano Lett. 2016, 16, 3955-3965.
Chen, L.; Zhou, G. M.; Liu, Z. B.; Ma, X. M.; Chen, J.; Zhang, Z. Y.; Ma, X. L.; Li, F.; Cheng, H. M.; Ren, W. C. Scalable clean exfoliation of high-quality few-layer black phosphorus for a flexible lithium ion battery. Adv. Mater. 2016, 28, 510-517.
Levchik, S. V.; Weil, E. D. A review of recent progress in phosphorus-based flame retardants. J. Fire Sci. 2006, 24, 345-364.
Li, W. J.; Chou, S. L.; Wang, J. Z.; Liu, H. K.; Dou, S. X. Simply mixed commercial red phosphorus and carbon nanotube composite with exceptionally reversible sodium-ion storage. Nano Lett. 2013, 13, 5480-5484.
Kim, Y.; Park, Y.; Choi, A.; Choi, N. S.; Kim, J.; Lee, J.; Ryu, J. H.; Oh, S. M.; Lee, K. T. An amorphous red phosphorus/carbon composite as a promising anode material for sodium ion batteries. Adv. Mater. 2013, 25, 3045-3049.
Qian, J. F.; Wu, X. Y.; Cao, Y. L.; Ai, X. P.; Yang, H. X. High capacity and rate capability of amorphous phosphorus for sodium ion batteries. Angew. Chem. 2013, 125, 4731-4734.
Song, J. X.; Yu, Z. X.; Gordin, M. L.; Hu, S.; Yi, R.; Tang, D. H.; Walter, T.; Regula, M.; Choi, D.; Li, X. L. et al. Chemically bonded phosphorus/graphene hybrid as a high performance anode for sodium-ion batteries. Nano Lett. 2014, 14, 6329-6335.
Zhang, C.; Wang, X.; Liang, Q. F.; Liu, X. Z.; Weng, Q. H.; Liu, J. W.; Yang, Y. J.; Dai, Z. H.; Ding, K. J.; Bando, Y. et al. Amorphous phosphorus/nitrogen-doped graphene paper for ultrastable sodium-ion batteries. Nano Lett. 2016, 16, 2054-2060.
Liu, Y. H.; Zhang, A. Y.; Shen, C. F.; Liu, Q. Z.; Cao, X.; Ma, Y. Q.; Chen, L.; Lau, C.; Chen, T. C.; Wei, F. W. et al. Red phosphorus nanodots on reduced graphene oxide as a flexible and ultra-fast anode for sodium-ion batteries. ACS Nano 2017, 11, 5530-5537.
Li, W. H.; Yang, Z. Z.; Li, M. S.; Jiang, Y.; Wei, X.; Zhong, X. W.; Gu, L.; Yu, Y. Amorphous red phosphorus embedded in highly ordered mesoporous carbon with superior lithium and sodium storage capacity. Nano Lett. 2016, 16, 1546-1553.
Li, W. H.; Hu, S. H.; Luo, X. Y.; Li, Z. L.; Sun, X. Z.; Li, M. S.; Liu, F. F.; Yu, Y. Confined amorphous red phosphorus in MOF-derived N-doped microporous carbon as a superior anode for sodium-ion battery. Adv. Mater. 2017, 29, 1605820.
Chen, Y. N.; Egan, G. C.; Wan, J. Y.; Zhu, S. Z.; Jacob, R. J.; Zhou, W. B.; Dai, J. Q.; Wang, Y. B.; Danner, V. A.; Yao, Y. G. et al. Ultra-fast self-assembly and stabilization of reactive nanoparticles in reduced graphene oxide films. Nat. Commun. 2016, 7, 12332.
Yao, Y. G.; Chen, F. J.; Nie, A. M.; Lacey, S. D.; Jacob, R. J.; Xu, S. M.; Huang, Z. N.; Fu, K.; Dai, J. Q.; Salamanca-Riba, L. et al. In situ high temperature synthesis of single-component metallic nanoparticles. ACS Cent. Sci. 2017, 3, 294-301.
Dave, K.; Park, K. H.; Dhayal, M. Two-step process for programmable removal of oxygen functionalities of graphene oxide: Functional, structural and electrical characteristics. RSC Adv. 2015, 5, 95657-95665.
Penmatsa, V.; Kim, T.; Beidaghi, M.; Kawarada, H.; Gu, L.; Wang, Z. F.; Wang, C. L. Three-dimensional graphene nanosheet encrusted carbon micropillar arrays for electrochemical sensing. Nanoscale 2012, 4, 3673-3678.
Dreyer, D. R.; Park, S.; Bielawski, C. W.; Ruoff, R. S. The chemistry of graphene oxide. Chem. Soc. Rev. 2010, 39, 228-240.
Sun, J.; Zheng, G. Y.; Lee, H. -W.; Liu, N.; Wang, H. T.; Yao, H. B.; Yang, W. S.; Cui, Y. Formation of stable phosphorus-carbon bond for enhanced performance in black phosphorus nanoparticle-graphite composite battery anodes. Nano Lett. 2014, 14, 4573-4580.
Forney, M. W.; Ganter, M. J.; Staub, J. W.; Ridgley, R. D.; Landi, B. J. Prelithiation of silicon-carbon nanotube anodes for lithium ion batteries by stabilized lithium metal powder (SLMP). Nano Lett. 2013, 13, 4158-4163.
Zhao, J.; Lu, Z. D.; Wang, H. T.; Liu, W.; Lee, H. W.; Yan, K.; Zhou, D.; Lin, D. C.; Liu, N.; Cui, Y. Artificial solid electrolyte interphase-protected LixSi nanoparticles: An efficient and stable prelithiation reagent for lithium-ion batteries. J. Am. Chem. Soc. 2015, 137, 8372-8375.
Yang, Y. J.; Tang, D. -M.; Zhang, C.; Zhang, Y. H.; Liang, Q. F.; Chen, S. M.; Weng, Q. H.; Zhou, M.; Xue, Y. M.; Liu, J. W. et al. "Protrusions" or "holes" in graphene: Which is the better choice for sodium ion storage? Energy Environ. Sci. 2017, 10, 979-986.
Ma, G. Y.; Xiang, Z. H.; Huang, K. S.; Ju, Z. C.; Zhuang, Q. C.; Cui, Y. H. Graphene-based phosphorus-doped carbon as anode material for high-performance sodium-ion batteries. Part. Part. Syst. Charact. 2017, 34, 1600315.
Lu, L. G.; Han, X. B.; Li, J. Q.; Hua, J. F.; Ouyang, M. G. A review on the key issues for lithium-ion battery management in electric vehicles. J. Power Sources 2013, 226, 272-288.
Zong, L. Q.; Zhu, B.; Lu, Z. D.; Tan, Y. L.; Jin, Y.; Liu, N.; Hu, Y.; Gu, S.; Zhu, J.; Cui, Y. Nanopurification of silicon from 84% to 99.999% purity with a simple and scalable process. Proc. Natl. Acad. Sci. USA 2015, 112, 13473-13477.
Zhu, B.; Jin, Y.; Tan, Y. L.; Zong, L. Q.; Hu, Y.; Chen, L.; Chen, Y. B.; Zhang, Q.; Zhu, J. Scalable production of Si nanoparticles directly from low grade sources for lithium-ion battery anode. Nano Lett. 2015, 15, 5750-5754.
Luo, W.; Wang, Y. X.; Wang, L. J.; Jiang, W.; Chou, S. -L.; Dou, S. X.; Liu, H. K.; Yang, J. P. Silicon/mesoporous carbon/crystalline TiO2 nanoparticles for highly stable lithium storage. ACS Nano 2016, 10, 10524-10532.
Balakrishnan, P. G.; Ramesh, R.; Kumar, T. P. Safety mechanisms in lithium-ion batteries. J. Power Sources 2006, 155, 401-414.
Janek, J.; Zeier, W. G. A solid future for battery development. Nat. Energy 2016, 1, 16141.
Xu, K. Nonaqueous liquid electrolytes for lithium-based rechargeable batteries. Chem. Rev. 2004, 104, 4303-4418.
Zhang, S. S. A review on electrolyte additives for lithium-ion batteries. J. Power Sources 2006, 162, 1379-1394.
Nakagawa, H.; Fujino, Y.; Kozono, S.; Katayama, Y.; Nukuda, T.; Sakaebe, H.; Matsumoto, H.; Tatsumi, K. Application of nonflammable electrolyte with room temperature ionic liquids (RTILs) for lithium-ion cells. J. Power Sources 2007, 174, 1021-1026.
Xu, K.; Ding, M. S.; Zhang, S. S.; Allen, J. L.; Jow, T. R. An attempt to formulate nonflammable lithium ion electrolytes with alkyl phosphates and phosphazenes. J. Electrochem. Soc. 2002, 149, A622-A626.
Hyung, Y. E.; Vissers, D. R.; Amine, K. Flame-retardant additives for lithium-ion batteries. J. Power Sources 2003, 119-121, 383-387.
Xiang, H. F.; Xu, H. Y.; Wang, Z. Z.; Chen, C. H. Dimethyl methylphosphonate (DMMP) as an efficient flame retardant additive for the lithium-ion battery electrolytes. J. Power Sources 2007, 173, 562-564.
Shim, E. G.; Nam, T. H.; Kim, J. G.; Kim, H. S.; Moon, S. I. Diphenyloctyl phosphate as a flame-retardant additive in electrolyte for Li-ion batteries. J. Power Sources 2008, 175, 533-539.
Zhu, X. M.; Jiang, X. Y.; Ai, X. P.; Yang, H. X.; Cao, Y. L. Bis(2, 2, 2-trifluoroethyl) ethylphosphonate as novel high-efficient flame retardant additive for safer lithium-ion battery. Electrochim. Acta 2015, 165, 67-71.
Liu, K.; Liu, W.; Qiu, Y. C.; Kong, B.; Sun, Y. M.; Chen, Z.; Zhuo, D.; Lin, D. C.; Cui, Y. Electrospun core-shell microfiber separator with thermal-triggered flame-retardant properties for lithium-ion batteries. Sci. Adv. 2017, 3, e1601978.
Kim, J. H.; Kim, J. H.; Kim, J. M.; Lee, Y. G.; Lee, S. Y. Superlattice crystals-mimic, flexible/functional ceramic membranes: Beyond polymeric battery separators. Adv. Energy Mater. 2015, 5, 1500954.
Kang, S. M.; Ryou, M. H.; Choi, J. W.; Lee, H. Mussel-and diatom-inspired silica coating on separators yields improved power and safety in Li-ion batteries. Chem. Mater. 2012, 24, 3481-3485.
Van der Veen, I.; de Boer, J. Phosphorus flame retardants: Properties, production, environmental occurrence, toxicity and analysis. Chemosphere 2012, 88, 1119-1153.
Green, J. A review of phosphorus-containing flame retardants. J. Fire Flammabl. 1992, 10, 470-487.