AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Metallized siligraphene nanosheets (SiC7) as high capacity hydrogen storage materials

Syeda R. Naqvi1Tanveer Hussain3( )Wei Luo1Rajeev Ahuja1,2
Condensed Matter Theory GroupDepartment of Physics and AstronomyBox 516, Uppsala University, S-75120, UppsalaSweden
Applied Materials PhysicsDepartment of Materials and EngineeringRoyal Institute of Technology (KTH)S-10044, StockholmSweden
Centre for Theoretical and Computational Molecular ScienceAustralian Institute for Bioengineering and NanotechnologyThe University of QueenslandBrisbaneQld4072Australia
Show Author Information

Graphical Abstract

Abstract

A planar honeycomb monolayer of siligraphene (SiC7) could be a prospective medium for clean energy storage due to its light weight, and its remarkable mechanical and unique electronic properties. By employing van der Waals-induced first principles calculations based on density functional theory (DFT), we have explored the structural, electronic, and hydrogen (H2) storage characteristics of SiC7 sheets decorated with various light metals. The binding energies of lithium (Li), sodium (Na), potassium (K), magnesium (Mg), calcium (Ca), scandium (Sc), and titanium (Ti) dopants on a SiC7 monolayer were studied at various doping concentrations, and found to be strong enough to counteract the metal clustering effect. We further verified the stabilities of the metallized SiC7 sheets at room temperature using ab initio molecular dynamics (MD) simulations. Bader charge analysis revealed that upon adsorption, due to the difference in electronegativity, all the metal adatoms donated a fraction of their electronic charges to the SiC7 sheet. Each partially charged metal center on the SiC7sheets could bind a maximum of 4 to 5 H2 molecules. A high H2 gravimetric density was achieved for several dopants at a doping concentration of 12.50%. The H2binding energies were found to fall within the ideal range of 0.2–0.6 eV. Based on these findings, we propose that metal-doped SiC7 sheets can operate as efficient H2 storage media under ambient conditions.

References

1

Schlapbach, L.; Züttel, A. Hydrogen-storage materials for mobile applications. Nature 2001, 414, 353-358.

2

Crabtree, G. W.; Dresselhaus, M. S.; Buchanan, M. V. The hydrogen economy. Phys. Today 2004, 57, 39-44.

3

Mazloomi, K.; Gomes, C. Hydrogen as an energy carrier: Prospects and challenges. Renewable Sustainable Energy Rev. 2012, 16, 3024-3033.

4

Van den Berg A. W.; Areán, C. O. Materials for hydrogen storage: Current research trends and perspectives. Chem. Commun. 2008, 668-681.

5

Kim, Y. H.; Zhao, Y. F.; Williamson, A.; Heben, M. J.; Zhang, S. B. Nondissociative adsorption of H2 molecules in light-element-doped fullerenes. Phys. Rev. Lett. 2006, 96, 016102.

6

US Department of Energy Office of Energy Efficiency and Renewable Energy and The FreedomCAR and Fuel Partnership. Targets for onboard hydrogen storage systems for light-duty vehicles[Online]. http://www1.eere.energy.gov/hydrogenandfuelcells/storage/pdfs/targets_onboard_hydro_storage_explanation.pdf (accessed March 2017).

7

Mpourmpakis, G.; Tylianakis, E.; Froudakis, G. E. Carbon nanoscrolls: A promising material for hydrogen storage. Nano Lett. 2007, 7, 1893-1897.

8

Züttel, A.; Sudan, P.; Mauron, P.; Kiyobayashi, T.; Emmenegger, C.; Schlapbach, L. Hydrogen storage in carbon nanostructures. Int. J. Hydrogen Energy 2002, 27, 203-212.

9

Panella, B.; Hirscher, M.; Roth, S. Hydrogen adsorption in different carbon nanostructures. Carbon 2005, 43, 2209-2214.

10

Dimitrakakis, G. K.; Tylianakis, E.; Froudakis, G. E. Pillared graphene: A new 3-D network nanostructure for enhanced hydrogen storage. Nano Lett. 2008, 8, 3166-3170.

11

Bogdanović, B.; Schwickardi, M. Ti-doped alkali metal aluminium hydrides as potential novel reversible hydrogen storage materials. J. Alloys Compd. 1997, 253-254, 1-9.

12

Zaluska, A.; Zaluski, L.; Ström-Olsen, J. O. Structure, catalysis and atomic reactions on the nano-scale: A systematic approach to metal hydrides for hydrogen storage. Appl. Phys. A: Mater. Sci. Proc. 2001, 72, 157-165.

13

Wiswall, R. H., Jr.; Reilly, J. J. Hydrogen storage in metal hydrides. Science 1974, 186, 1158.

14

Lee, H.; Ihm, J.; Cohen, M. L.; Louie, S. G. Calcium-decorated carbon nanotubes for high-capacity hydrogen storage: First-principles calculations. Phys. Rev. B 2009, 80, 115412.

15

Wang, L.; Lee, K.; Sun, Y. Y.; Lucking, M.; Chen Z. F.; Zhao, J. J. B. Graphene oxide as an ideal substrate for hydrogen storage. ACS Nano 2009, 3, 2995-3000.

16

Li, M.; Li, Y. F.; Zhou, Z.; Shen, P. W.; Chen, Z. F. Ca-coated boron fullerenes and nanotubes as superior hydrogen storage materials. Nano Lett. 2009, 9, 1944-1948.

17

Chandrakumar, K. R. S.; Ghosh, S. K. Alkali-metal-induced enhancement of hydrogen adsorption in C60 fullerenes: An ab initio study. Nano Lett. 2008, 8, 13-19.

18

Novoselov, K. S.; Geim, A. K.; Morozov, S. V.; Jiang, D.; Zhang, Y.; Dubonos, S. V.; Grigorieva, I. V.; Firsov, A. A. Electric field effect in atomically thin carbon films. Science 2004, 306, 666-669.

19

Ataca, C.; Aktürk, E.; Ciraci, S.; Ustunel, H. High-capacity hydrogen storage by metallized graphene. Appl. Phys. Lett. 2008, 93, 043123.

20

Arellano, J. S.; Molina, L. M.; Rubio, A.; Alonso, J. A. Density functional study of adsorption of molecular hydrogen on graphene layers. J. Chem. Phys. 2000, 112, 8114-8119.

21

Hussain, T.; Pathak, B.; Ramzan, M.; Maark, T. A.; Ahuja, R. Calcium doped graphane as a hydrogen storage material. Appl. Phys. Lett. 2012, 100, 183902.

22

Venkataramanan, N. S.; Khazaei, M.; Sahara, R.; Mizuseki, H.; Kawazoe, Y. First-principles study of hydrogen storage over Ni and Rh doped BN sheets. Chem. Phys. 2009, 359, 173-178.

23

Naqvi, S. R.; Rao, G. S.; Luo, W.; Ahuja, R.; Hussain, T. Hexagonal boron nitride (h-BN) sheets with OLi, ONa, and Li2F molecules for enhanced energy storage. ChemPhysChem 2017, 18, 513-518.

24

Yang, Z. L.; Ni, J. Li-doped BC3 sheet for high-capacity hydrogen storage. Appl. Phys. Lett. 2012, 100, 183109.

25

Naqvi, S. R.; Hussain, T.; Panigrahi, P.; Luo, W.; Ahuja, R. Manipulating energy storage characteristics of ultrathin boron carbide monolayer under varied scandium doping. RSC Adv. 2017, 7, 8598-8605.

26

Wang, J.; Li, J. B.; Li, S. S.; Liu, Y. Hydrogen storage by metalized silicene and silicane. J. Appl. Phys. 2013, 114, 124309.

27

Hussain, T.; Chakraborty, S.; Ahuja, R. Metal-functionalized silicene for efficient hydrogen storage. ChemPhysChem 2013, 14, 3463-3466.

28

Li, Q. F.; Wan, X. G.; Duan, C. G.; Kuo, J. L. Theoretical prediction of hydrogen storage on Li-decorated monolayer black phosphorus. J. Phys. D: Appl. Phys. 2014, 47, 465302.

29

Dillon, A. C.; Jones, K. M.; Bekkedahi, T. A.; Kiang, C. H.; Bethune, D. S.; Heben, M. J. Storage of hydrogen in single-walled carbon nanotubes. Nature 1997, 386, 377-379.

30

Hashmi, A.; Farooq, M. U.; Khan, I.; Son, J.; Hong, J. S. Ultra-high capacity hydrogen storage in a Li decorated two-dimensional C2N layer. J. Mater. Chem. A 2017, 5, 2821-2828.

31

Ritschel, M.; Uhlemann, M.; Gutfleisch, O.; Leonhardt, A.; Graff, A.; Täschner, Ch.; Fink, J. Hydrogen storage in different carbon nanostructures. Appl. Phys. Lett. 2002, 80, 2985-2987.

32

Ataca, C.; Aktürk, E.; Ciraci, S.; Ustunel, H. High-capacity hydrogen storage by metallized graphene. Appl. Phys. Lett. 2008, 93, 043123.

33

Sun, Q.; Jena, P.; Wang, Q.; Marquez, M. First-principles study of hydrogen storage on Li12C60. J. Am. Chem. Soc. 2006, 128, 9741-9745.

34

Faye, O.; Edouk, U.; Szpunar, J.; Szpunar, B.; Samoura, A.; Beye, A. Hydrogen storage on bare Cu atom and Cu-functionalized boron-doped graphene: A first principles study. Int. J. Hydrogen Energy 2017, 42, 4233-4243.

35

Faye, O.; Szpunar, J. A.; Szpunar, B.; Beye, A. C. Hydrogen adsorption and storage on palladium-fuctionalized graphene with NH-dopant: A first principles calculation. Appl. Surf. Sci. 2017, 392, 362-374.

36

Zhou, Y. N.; Chu, W.; Jing, F. L.; Zheng, J.; Sun, W. J.; Xue, Y. Enhanced hydrogen storage on Li-doped defective graphene with B substitution: A DFT study. Appl. Surf. Sci. 2017, 410, 166-176.

37

Haldar, S.; Mukherjee, S.; Ahmed, F.; Singh, C. V. A first principles study of hydrogen storage in lithium decorated defective phosphorene. Int. J. Hydrogen Energy 2017, 42, 23018-23027.

38

Hussain, T.; Hankel, M.; Searles, D. J. Computational evaluation of lithium-functionalized carbon nitride (g-C6N8) monolayer as an efficient hydrogen storage material. J. Phys. Chem. C 2016, 120, 25180-25188.

39

Mpourmpakis, G.; Froudakis, G. E.; Lithoxoos, G. P.; Samios, J. SiC nanotubes: A novel material for hydrogen storage. Nano Lett. 2006, 6, 1581-1583.

40

Shi, Z. M.; Zhang, Z. H.; Kutana, A.; Yakobson, B. I. Predicting two-dimensional silicon carbide monolayers. ACS Nano 2015, 9, 9802-9809.

41

Lin, S. S. Light-emitting two-dimensional ultrathin silicon carbide. J. Phys. Chem. C 2012, 116, 3951-3955.

42

Lin, S. S.; Zhang, S. J.; Li, X. Q.; Xu, W. L.; Pi, X. D.; Liu, X. Y.; Wang, F. C.; Wu, H. G.; Chen, H. S. Quasi-two-dimensional SiC and SiC2: Interaction of silicon and carbon at atomic thin lattice plane. J. Phys. Chem. C 2015, 119, 19772-19779.

43

Taguchi, T.; Igawa, N.; Yamamoto, H.; Jitsukawa, S. Synthesis of silicon carbide nanotubes. J. Am. Ceram. Soc. 2005, 88, 459-461.

44

Pei, L. Z.; Tang, Y. H.; Chen, Y. W.; Guo, C.; Li, X. X.; Yuan, Y.; Zhang, Y. Preparation of silicon carbide nanotubes by hydrothermal method. J. Appl. Phys. 2006, 99, 114306.

45

Dong, H. L.; Zhou, L. J.; Frauenheim, T.; Hou, T. J.; Lee, S. T.; Li, Y. Y. SiC7 siligraphene: A novel donor material with extraordinary sunlight absorption. Nanoscale 2016, 8, 6994-6999.

46

Kresse, G.; Hafner, J. Ab initio molecular dynamics for liquid metals. Phys. Rev. B 1993, 47, 558-561.

47

Kresse, G.; Hafner, J. Ab initio molecular-dynamics simulation of the liquid-metal-amorphous-semiconductor transition in germanium. Phys. Rev. B 1994, 49, 14251-14269.

48

Blöchl, P. E. Projector augmented-wave method. Phys. Rev. B 1994, 50, 17953-17979.

49

Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 3865-3868.

50

Grimme, S. Semiempirical GGA-type density functional constructed with a long-range dispersion correction. J. Comput. Chem. 2006, 27, 1787-1799.

51

Monkhorst, H. J.; Pack, J. D. Special points for Brillouin-zone integrations. Phys. Rev. B 1976, 13, 5188-5192.

52

Bader, R. F. W. Atoms in Molecules: A Quantum Theory; Oxford University Press: Oxford, 1990.

53

Kubas, G. J. Metal-dihydrogen and σ-bond coordination: The consummate extension of the Dewar-Chatt-Duncanson model for metal-olefin π bonding. J. Organomet. Chem. 2001, 635, 37-68.

Nano Research
Pages 3802-3813
Cite this article:
Naqvi SR, Hussain T, Luo W, et al. Metallized siligraphene nanosheets (SiC7) as high capacity hydrogen storage materials. Nano Research, 2018, 11(7): 3802-3813. https://doi.org/10.1007/s12274-017-1954-z

697

Views

53

Crossref

N/A

Web of Science

54

Scopus

0

CSCD

Altmetrics

Received: 29 September 2017
Revised: 24 November 2017
Accepted: 07 December 2017
Published: 02 August 2018
© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2017
Return