AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Ultrahigh-performance mesoporous ZnMn2O4 microspheres as anode materials for lithium-ion batteries and their in situ Raman investigation

Xiaobin Zhong1Xiaoxiao Wang1Huiyuan Wang2( )Zhizheng Yang2Yuxiong Jiang1( )Jianfeng Li1( )Zhongqun Tian1
MOE Key Laboratory of Spectrochemical Analysis and InstrumentationState Key Laboratory of Physical Chemistry of Solid SurfacesCollege of Chemistry and Chemical EngineeringXiamen UniversityXiamen361005China
Key Laboratory of Automobile MaterialsMinistry of EducationCollege of Materials Science and EngineeringJilin UniversityChangchun130012China
Show Author Information

Graphical Abstract

Abstract

Currently, lithium-ion batteries play a key role in energy storage; however, their applications are limited by their low energy density. Here, we design a facile method to prepare mesoporous ZnMn2O4 microspheres with ultrahigh rate performance and ultralong cycling properties by finely tuning the solution viscosity during synthesis. When the current density is raised to 2 A·g-1, the discharge capacity is maintained at 879 mA·h·g-1 after 500 cycles. The electrochemical properties of mesoporous ZnMn2O4 microspheres are better than that for most reported ZnMn2O4. To understand the electrochemical processes on the mesoporous ZnMn2O4 microspheres, in situ Raman spectroscopy is used to investigate the electrode surface. The results show that mesoporous ZnMn2O4 microspheres have a great potential as an alternative to commercial carbon anode materials.

Electronic Supplementary Material

Download File(s)
12274_2017_1955_MOESM1_ESM.pdf (1.5 MB)

References

1

Lin, D. C.; Liu, Y. Y.; Cui, Y. Reviving the lithium metal anode for high-energy batteries. Nat. Nanotechnol. 2017, 12, 194-206.

2

Cheng, X. B.; Zhang, R.; Zhao, C. Z.; Wei, F.; Zhang, J. G.; Zhang, Q. A review of solid electrolyte interphases on lithium metal anode. Adv. Sci. 2016, 3, 1500213.

3

Lian, C.; Xiao, X. L.; Chen, Z.; Liu, Y. X.; Zhao, E. Y.; Wang, D. S.; Chen, C. Preparation of hexagonal ultrathin WO3 nano-ribbons and their electrochemical performance as an anode material in lithium ion batteries. Nano Res. 2016, 9, 435-441.

4

Luo, K.; Roberts, M. R.; Hao, R.; Guerrini, N.; Pickup, D. M.; Liu, Y. S.; Edstrom, K.; Guo, J. H.; Chadwick, A. V.; Duda, L. C. et al. Charge-compensation in 3D-transition-metal-oxide intercalation cathodes through the generation of localized electron holes on oxygen. Nat. Chem. 2016, 8, 684-691.

5

Liang, J.; Hu, H.; Park, H.; Xiao, C. H.; Ding, S. J.; Paik, U.; Lou, X. W. Construction of hybrid bowl-like structures by anchoring NiO nanosheets on flat carbon hollow particles with enhanced lithium storage properties. Energy Environ. Sci. 2015, 8, 1707-1711.

6

Hou, L. R.; Lian, L.; Zhang, L. H.; Pang, G.; Yuan, C. Z.; Zhang, X. G. Self-sacrifice template fabrication of hierarchical mesoporous bi-component-active ZnO/ZnFe2O4 sub-microcubes as superior anode towards high-performance lithium-ion battery. Adv. Funct. Mater. 2015, 25, 238-246.

7

Poizot, P.; Laruelle, S.; Grugeon, S.; Dupont, L.; Tarascon, J. M. Nano-sized transition-metal oxides as negative-electrode materials for lithium-ion batteries. Nature 2000, 407, 496-499.

8

Zhao, Y.; Liu, X. Z.; Li, H. Q.; Zhai, T. Y.; Zhou, H. S. Hierarchical micro/nanoporous silicon Li-ion battery anodes. Chem. Commun. 2012, 48, 5079-5081.

9

Zou, F.; Hu, X. L.; Li, Z.; Qie, L.; Hu, C. C.; Zeng, R.; Jiang, Y.; Huang, Y. H. MOF-derived porous ZnO/ZnFe2O4/C octahedra with hollow interiors for high-rate lithium-ion batteries. Adv. Mater. 2014, 26, 6622-6628.

10

Lin, L.; Pan, Q. M. ZnFe2O4@C/graphene nanocomposites as excellent anode materials for lithium batteries. J. Mater. Chem. A 2015, 3, 1724-1729.

11

Zhang, G. H.; Hou, S. C.; Zhang, H.; Zeng, W.; Yan, F. L.; Li, C. C.; Duan, H. G. High-performance and ultra-stable lithium-ion batteries based on MOF-derived ZnO@ZnO quantum dots/C core-shell nanorod arrays on a carbon cloth anode. Adv. Mater. 2015, 27, 2400-2405.

12

Zhong, X. B.; Jin, B.; Yang, Z. Z.; Wang, C.; Wang, H. Y. Facile shape design and fabrication of ZnFe2O4 as an anode material for Li-ion batteries. RSC Adv. 2014, 4, 55173-55178.

13

Zhang, L.; Wu, H. B.; Lou, X. W. Iron-oxide-based advanced anode materials for lithium-ion batteries. Adv. Energy Mater. 2014, 4, 1300958.

14

Xia, H.; Zhu, D. D.; Fu, Y. S.; Wang, X. CoFe2O4-graphene nanocomposite as a high-capacity anode material for lithium-ion batteries. Electrochim. Acta 2012, 83, 166-174.

15

Fu, Y. S.; Wan, Y. H.; Xia, H.; Wang, X. Nickel ferrite-graphene heteroarchitectures: Toward high-performance anode materials for lithium-ion batteries. J. Power Sources 2012, 213, 338-342.

16

Wu, J. F.; Song, Y. H.; Zhou, R. H.; Chen, S. H.; Zuo, L.; Hou, H. Q.; Wang, L. Zn-Fe-ZIF-derived porous ZnFe2O4/ C@NCNT nanocomposites as anodes for lithium-ion batteries. J. Mater. Chem. A 2015, 3, 7793-7798.

17

Wang, B.; Li, S. M.; Li, B.; Liu, J. H.; Yu, M. Facile and large-scale fabrication of hierarchical ZnFe2O4/graphene hybrid films as advanced binder-free anodes for lithium-ion batteries. New J. Chem. 2015, 39, 1725-1733.

18

Zhu, Y. Q.; Cao, C. B.; Zhang, J. T.; Xu, X. Y. Two-dimensional ultrathin ZnCo2O4 nanosheets: General formation and lithium storage application. J. Mater. Chem. A 2015, 3, 9556-9564.

19

Zhong, X. B.; Wang, H. Y.; Yang, Z. Z.; Jin, B.; Jiang, Q. C. Facile synthesis of mesoporous ZnCo2O4 coated with polypyrrole as an anode material for lithium-ion batteries. J. Power Sources 2015, 296, 298-304.

20

Xiong, P.; Liu, B. R.; Teran, V.; Zhao, Y.; Peng, L. L.; Wang, X.; Yu, G. H. Chemically integrated two-dimensional hybrid zinc manganate/graphene nanosheets with enhanced lithium storage capability. ACS Nano 2014, 8, 8610-8616.

21

Li, G. D.; Wang, Y. Y.; Yang, L. S.; Ma, W. Y.; Wang, M. In situ synthesis of ZnMn2O4-ZnO-C and ZnMn2O4-C nanohybrids as high performance lithium-ion battery anodes. Eur. J. Inorg. Chem. 2014, 2014, 845-851.

22

Jiang, J.; Li, Y. Y.; Liu, J. P.; Huang, X. T.; Yuan, C. Z.; Lou, X. W. Recent advances in metal oxide-based electrode architecture design for electrochemical energy storage. Adv. Mater. 2012, 24, 5166-5180.

23

Yuan, C. Z.; Li, J. Y.; Hou, L. R.; Zhang, L. H.; Zhang, X. G. Template-free fabrication of mesoporous hollow ZnMn2O4 sub-microspheres with enhanced lithium storage capability towards high-performance Li-ion batteries. Part. Part. Syst. Charact. 2014, 31, 657-663.

24

Yuan, C. Z.; Wu, H. B.; Xie Y.; Lou, X. W. Mixed transition-metal oxides: Design, synthesis, and energy-related applications. Angew. Chem., Int. Ed. 2014, 53, 1488-1504.

25

Bai, Z. C.; Fan, N.; Ju, Z. C.; Guo, C. L.; Qian, Y. T.; Tang, B.; Xiong, S. L. Facile synthesis of mesoporous Mn3O4 nanotubes and their excellent performance for lithium-ion batteries. J. Mater. Chem. A 2013, 1, 10985-10990.

26

Chen, X. F.; Qie, L.; Zhang, L. L.; Zhang, W. X.; Huang, Y. H. Self-templated synthesis of hollow porous submicron ZnMn2O4 sphere as anode for lithium-ion batteries. J. Alloys Compd. 2013, 559, 5-10.

27

Gao, G. X.; Lu, S. Y.; Dong, B. T.; Yan, W.; Wang, W.; Zhao, T.; Lao, C. Y.; Xi, K.; Kumarc, R. V.; Ding, S. J. Construction of sandwich-type hybrid structures by anchoring mesoporous ZnMn2O4 nanofoams on reduced graphene oxide with highly enhanced capability. J. Mater. Chem. A 2016, 4, 10419-10424.

28

Zheng, Z. M.; Cheng, Y. L.; Yan, X. B.; Wang, R. T.; Zhang, P. Enhanced electrochemical properties of graphene wrapped ZnMn2O4 nanorods for lithium-ion batteries. J. Mater. Chem. A 2014, 2, 149-154.

29

Kim, J. G.; Lee, S. H.; Kim, Y.; Kim, W. B. Fabrication of free-standing ZnMn2O4 mesoscale tubular arrays for lithium-ion anodes with highly reversible lithium storage properties. ACS Appl. Mater. Interfaces 2013, 5, 11321-11328.

30

Bai, Z. C.; Fan, N.; Sun, C. H.; Ju, Z. C.; Guo, C. L.; Yang, J.; Qian, Y. T. Facile synthesis of loaf-like ZnMn2O4 nanorods and their excellent performance in Li-ion batteries. Nanoscale 2013, 5, 2442-2447.

31

Courtel, F. M.; Yaser, A. L.; Davidson, I. J. ZnMn2O4 nanoparticles synthesized by a hydrothermal method as an anode material for Li-ion batteries. Electrochim. Acta 2012, 71, 123-127.

32

Domide, D.; Huebner, O.; Behrens, S.; Walter, O.; Wadepohl, H.; Kaifer, E.; Himmel, H. J. Synthesis and reactivity of a new oxidation-labile heterobimetallic Mn6Zn2 carbamate cluster and precursor to nanosized magnetic oxide particles. Eur. J. Inorg. Chem. 2011, 2011, 1387-1394.

33

Hy, S.; Felix, F.; Rick, J.; Su, W. N.; Hwang, B. J. Direct in situ observation of Li2O evolution on Li-rich high-capacity cathode material, Li[NixLi(1-2x)/3Mn(2-x)/3]O2 (0 ≤ x ≤ 0.5). J. Am. Chem. Soc. 2014, 136, 999-1007.

34

Yin, L. W.; Zhang, Z. W.; Li, Z. Q.; Hao, F. B.; Li, Q.; Wang, C. X.; Fan, R. H.; Qi, Y. X. Spinel ZnMn2O4 nanocrystal-anchored 3D hierarchical carbon aerogel hybrids as anode materials for lithium ion batteries. Adv. Funct. Mater. 2014, 24, 4176-4185.

35

Liu, Y. R.; Bai, J.; Ma, X. J.; Li, J. F.; Xiong, S. L. Formation of quasi-mesocrystal ZnMn2O4 twin microspheres via an oriented attachment for lithium-ion batteries. J. Mater. Chem. A 2014, 2, 14236-14244.

36

Hu, L. L.; Qu, B. H.; Li, C. C.; Chen, Y. J.; Mei, L.; Lei, D. N.; Chen, L. B.; Li, Q. H.; Wang, T. H. Facile synthesis of uniform mesoporous ZnCo2O4 microspheres as a high-performance anode material for Li-ion batteries. J. Mater. Chem. A 2013, 1, 5596-5602.

37

Hwang, S. M.; Lim, Y. G.; Kim, J. G.; Heo, Y. U.; Lim, J. H.; Yamauchi, Y.; Park, M. S.; Kim, Y. J.; Dou, S. X.; Kim, J. H. A case study on fibrous porous SnO2 anode for robust, high-capacity lithium-ion batteries. Nano Energy 2014, 10, 53-62.

38

Zhou, X.; Feng, W.; Wang, C.; Hu, X. L.; Li, X. W.; Sun, P.; Shimanoe, K.; Yamazoe, N.; Lu, G. L. Porous ZnO/ ZnCo2O4 hollow spheres: Synthesis, characterization, and applications in gas sensing. J. Mater. Chem. A 2014, 2, 17683-17690.

39

Xiao, Y.; Hu, C. W.; Cao, M. H. High lithium storage capacity and rate capability achieved by mesoporous Co3O4 hierarchical nanobundles. J. Power Sources 2014, 247, 49-56.

40

Zhou, L.; Wu, H. B.; Zhu, T.; Lou, X. W. Facile preparation of ZnMn2O4 hollow microspheres as high-capacity anodes for lithium-ion batteries. J. Mater. Chem. 2012, 22, 827-829.

41

Wang, N. N.; Ma, X. J.; Xu, H. Y.; Chen, L.; Yue, J.; Niu, F. E.; Yang, J.; Qian, Y. T. Porous ZnMn2O4 microspheres as a promising anode material for advanced lithium-ion batteries. Nano Energy 2014, 6, 193-199.

42

Song, M. S.; Cho, Y. J.; Yoon, D. Y.; Nahm, S.; Oh, S. H.; Woo, K.; Ko, J. M.; Cho, W. I. Solvothermal synthesis of ZnMn2O4 as an anode material in lithium ion battery. Electrochim. Acta 2014, 137, 266-272.

43

Zhao, J.; Wang, F. Q.; Su, P. P.; Li, M. R.; Chen, J.; Yang, Q. H.; Li, C. Spinel ZnMn2O4 nanoplate assemblies fabricated via "escape-by-crafty-scheme" strategy. J. Mater. Chem. 2012, 22, 13328-13333.

44

Zhang, G. Q.; Yu, L.; Wu, H. B.; Hoster, H. E.; Lou, X. W. Formation of ZnMn2O4 ball-in-ball hollow microspheres as a high-performance anode for lithium-ion batteries. Adv. Mater. 2012, 24, 4609-4613.

45

Huang, L.; Waller, G. H.; Ding, Y.; Chen, D. C.; Ding, D.; Xi, P. X.; Wang, Z. L.; Liu, M. L. Controllable interior structure of ZnCo2O4 microspheres for high-performance lithiumion batteries. Nano Energy 2015, 11, 64-67.

46

Wei, W.; Yang, S. B.; Zhou, H. X.; Lieberwirth, I.; Feng, X. L.; Müllen, K. 3D graphene foams cross-linked with pre-encapsulated Fe3O4 nanospheres for enhanced lithium storage. Adv. Mater. 2013, 25, 2909-2914.

47

Chao, D. L.; Zhu, C. R.; Yang, P. H.; Xia, X. H.; Liu, J. L.; Wang. J.; Fan, X. F.; Savilov, S. V.; Lin, J. Y.; Fan, H. J. et al. Array of nanosheets render ultrafast and high-capacity Na-ion storage by tunable pseudocapacitance. Nat. Commun. 2016, 7, 12122.

48

Chao, D. L.; Liang, P.; Chen, Z.; Bai, L. Y.; Shen, H.; Liu, X. X.; Xia, X. H.; Zhao, Y. L.; Savilov, S. V.; Lin, J. Y. et al. Pseudocapacitive Na-ion storage boosts high rate and areal capacity of self-branched 2D layered metal chalcogenide nanoarrays. ACS Nano 2016, 10, 10211-10219.

49

Malavasi, L.; Galinetto, P.; Mozzati, M. C.; Azzoni, C. B.; Flor, G. Raman spectroscopy of AMn2O4 (A = Mn, Mg and Zn) spinels. Phys. Chem. Chem. Phys. 2002, 4, 3876-3880.

50

Bhattacharya, S.; Riahi, A. R.; Alpas, A. T. Role of voltage scan rate on degradation of graphite electrodes electrochemically cycled vs. Li/Li+. In Conference: 2011 MRS Fall Meeting & Exhibit, Boston, USA, 2012, pp 1388.

51

Hy, S.; Felix; Chen, Y. H.; Liu, J. Y.; Rick, J.; Hwang, B. J. In situ surface enhanced Raman spectroscopic studies of solid electrolyte interphase formation in lithium ion battery electrodes. J. Power Sources 2014, 256, 324-328.

52

Han, Y. F.; Ramesh, K.; Chen, L. W.; Widjaja, E.; Chilukoti, S.; Chen, F. X. Observation of the reversible phase-transformation of α-Mn2O3 nanocrystals during the catalytic combustion of methane by in situ Raman spectroscopy. J. Phys. Chem. C 2007, 111, 2830-2833.

Nano Research
Pages 3814-3823
Cite this article:
Zhong X, Wang X, Wang H, et al. Ultrahigh-performance mesoporous ZnMn2O4 microspheres as anode materials for lithium-ion batteries and their in situ Raman investigation. Nano Research, 2018, 11(7): 3814-3823. https://doi.org/10.1007/s12274-017-1955-y

677

Views

32

Crossref

N/A

Web of Science

34

Scopus

3

CSCD

Altmetrics

Received: 24 September 2017
Revised: 13 November 2017
Accepted: 05 December 2017
Published: 02 August 2018
© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2017
Return