AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Synthesis of ultrathin semicircle-shaped copper nanowires in ethanol solution for low haze flexible transparent conductors

Ye ZhangJiangna GuoDan XuYi SunFeng Yan( )
Jiangsu Key Laboratory of Advanced Functional Polymer Design and ApplicationDepartment of Polymer Science and EngineeringCollege of ChemistryChemical Engineering and Materials ScienceSoochow UniversitySuzhou215123China
Show Author Information

Graphical Abstract

Abstract

Copper nanowires (CuNWs) are becoming an indispensable item for next-generation transparent optical devices due to their excellent conductivity and transparency. In this work, ultrathin semicircle-shaped copper nanowires(SCuNWs) with a diameter of ~ 15 nm and a length of ~ 30 μm (aspect ratio of ~2, 000) were synthesized in ethanol solution. The mechanism and factors that affect the morphology and dispersity of the SCuNWs were investigated. The prepared SCuNWs were coated on polyethylene terephthalate (PET) or polydimethylsiloxane (PDMS) substrate to fabricate flexible transparent conductors (FTCs). The fabricated FTCs exhibited excellent optoelectrical performance and low haze. In addition, the fabricated FTCs showed high mechanical stability during stretching and bending, indicating their great potential in flexible optical devices.

Electronic Supplementary Material

Download File(s)
12274_2018_1966_MOESM1_ESM.pdf (2.3 MB)

References

1

Hecht, D. S.; Hu, L. B.; Irvin, G. Emerging transparent electrodes based on thin films of carbon nanotubes, graphene, and metallic nanostructures. Adv. Mater. 2011, 23, 1482–1513.

2

Yim, J. H.; Joe, S. -Y.; Pang, C.; Lee, K. M.; Jeong, H.; Park, J. -Y.; Ahn, Y. H.; de Mello, J. C.; Lee, S. Fully solution-processed semitransparent organic solar cells with a silver nanowire cathode and a conducting polymer anode. ACS Nano 2014, 8, 2857–2863.

3

Hu, W. L.; Wang, R. R.; Lu, Y. F.; Pei, Q. B. An elastomeric transparent composite electrode based on copper nanowires and polyurethane. J. Mater. Chem. C 2014, 2, 1298–1305.

4

Wang, R. R.; Zhai, H. T.; Wang, T.; Wang, X.; Cheng, Y.; Shi, L. J.; Sun, J. Plasma-induced nanowelding of a copper nanowire network and its application in transparent electrodes and stretchable conductors. Nano Res. 2016, 9, 2138–2148.

5

Rogers, J. A.; Someya, T.; Huang, Y. G. Materials and mechanics for stretchable electronics. Science 2010, 327, 1603–1607.

6

Zhang, Y.; Guo, J. N.; Xu, D.; Sun, Y.; Yan, F. One-pot synthesis and purification of ultralong silver nanowires for flexible transparent conductive electrodes. ACS Appl. Mater. Interfaces 2017, 9, 25465–25473.

7

Hwang, H.; Kim, A.; Zhong, Z. Y.; Kwon, H. C.; Jeong, S.; Moon, J. Reducible-shell-derived pure-copper-nanowire network and its application to transparent conducting electrodes. Adv. Funct. Mater. 2016, 26, 6545–6554.

8

Granqvist, C. G.; Hultåker, A. Transparent and conducting ITO films: New developments and applications. Thin Solid Films 2002, 411, 1–5.

9

Chen, J. Y.; Zhou, W. X.; Chen, J.; Fan, Y.; Zhang, Z. Q.; Huang, Z. D.; Feng, X. M.; Mi, B. X.; Ma, Y. W.; Huang, W. Solution-processed copper nanowire flexible transparent electrodes with PEDOT: PSS as binder, protector and oxide-layer scavenger for polymer solar cells. Nano Res. 2015, 8, 1017–1025.

10

Ye, S. R.; Rathmell, A. R.; Chen, Z. F.; Stewart, I. E.; Wiley, B. J. Metal nanowire networks: The next generation of transparent conductors. Adv. Mater. 2014, 26, 6670–6687.

11

Han, S.; Hong, S.; Ham, J.; Yeo, J.; Lee, J.; Kang, B.; Lee, P.; Kwon, J.; Lee, S. S.; Yang, M. Y. et al. Fast plasmonic laser nanowelding for a Cu-nanowire percolation network for flexible transparent conductors and stretchable electronics. Adv. Mater. 2014, 26, 5808–5814.

12

Bob, B.; Machness, A.; Song, T. -B.; Zhou, H. P.; Chung, C. -H.; Yang, Y. Silver nanowires with semiconducting ligands for low-temperature transparent conductors. Nano Res. 2016, 9, 392–400.

13

Kim, T.; Canlier, A.; Kim, G. H.; Choi, J.; Park, M.; Han, S. M. Electrostatic spray deposition of highly transparent silver nanowire electrode on flexible substrate. ACS Appl. Mater. Interfaces 2013, 5, 788–794.

14

Sciacca, B.; van de Groep, J.; Polman, A.; Garnett, E. C. Solution-grown silver nanowire ordered arrays as transparent electrodes. Adv. Mater. 2016, 28, 905–909.

15

Jin, Y. X.; Wang, K. Q.; Cheng, Y. R.; Pei, Q. B.; Xu, Y. X.; Xiao, F. Removable large-area ultrasmooth silver nanowire transparent composite electrode. ACS Appl. Mater. Interfaces 2017, 9, 4733–4741.

16

Zhong, Z. Y.; Lee, H.; Kang, D.; Kwon, S.; Choi, Y. -M.; Kim, I.; Kim, K. -Y.; Lee, Y.; Woo, K.; Moon, J. Continuous patterning of copper nanowire-based transparent conducting electrodes for use in flexible electronic applications. ACS Nano 2016, 10, 7847–7854.

17

Li, B.; Ye, S. R.; Stewart, I. E.; Alvarez, S.; Wiley, B. J. Synthesis and purification of silver nanowires to make conducting films with a transmittance of 99%. Nano Lett. 2015, 15, 6722–6726.

18

Yin, Z. X.; Song, S. K.; You, D. J.; Ko, Y.; Cho, S.; Yoo, J.; Park, S. Y.; Piao, Y. Z.; Chang, S. T.; Kim, Y. S. Novel synthesis, coating, and networking of curved copper nanowires for flexible transparent conductive electrodes. Small 2015, 11, 4576–4583.

19

Song, M.; You, D. S.; Lim, K.; Park, S.; Jung, S.; Kim, C. S.; Kim, D. H.; Kim, D. G.; Kim, J. K.; Park, J. Highly efficient and bendable organic solar cells with solution-processed silver nanowire electrodes. Adv. Funct. Mater. 2013, 23, 4177–4184.

20

Song, J. Z.; Li, J. H.; Xu, J. Y.; Zeng, H. B. Superstable transparent conductive Cu@Cu4Ni nanowire elastomer composites against oxidation, bending, stretching, and twisting for flexible and stretchable optoelectronics. Nano Lett. 2014, 14, 6298–6305.

21

Cheng, Y.; Wang, S. L.; Wang, R. R.; Sun, J.; Gao, L. Copper nanowire based transparent conductive films with high stability and superior stretchability. J. Mater. Chem. C 2014, 2, 5309–5316.

22

Zhong, Z. Y.; Woo, K.; Kim, I.; Hwang, H.; Kwon, S.; Choi, Y. -M.; Lee, Y.; Lee, T. -M.; Kim, K.; Moon, J. Roll-to-roll-compatible, flexible, transparent electrodes based on self-nanoembedded cu nanowires using intense pulsed light irradiation. Nanoscale 2016, 8, 8995–9003.

23

Araki, T.; Jiu, J. T.; Nogi, M.; Koga, H.; Nagao, S.; Sugahara, T.; Suganuma, K. Low haze transparent electrodes and highly conducting air dried films with ultra-long silver nanowires synthesized by one-step polyol method. Nano Res. 2014, 7, 236–245.

24

Tang, Y.; Gong, S.; Chen, Y.; Yap, L. W.; Cheng, W. L. Manufacturable conducting rubber ambers and stretchable conductors from copper nanowire aerogel monoliths. ACS Nano 2014, 8, 5707–5714.

25

Yin, Z. X.; Song, S. K.; Cho, S.; You, D. -J.; Yoo, J.; Chang, S. T.; Kim, Y. S. Curved copper nanowires-based robust flexible transparent electrodes via all-solution approach. Nano Res. 2017, 10, 3077–3091

26

Zhang, Y.; Zhou, N.; Zhang, K. Q.; Yan, F. Plasmonic copper nanowire@TiO2 nanostructures for improving the performance of dye-sensitized solar cells. J. Power Sources 2017, 342, 292–300.

27

Glaria, A.; Cure, J.; Piettre, K.; Coppel, Y.; Turrin, C. O.; Chaudret, B.; Fau, P. Deciphering ligands' interaction with Cu and Cu2O nanocrystal surfaces by nmr solution tools. Chem—Eur. J. 2015, 21, 1169–1178.

28

Qian, F.; Lan, P. C.; Olson, T.; Zhu, C.; Duoss, E. B.; Spadaccini, C. M.; Han, T. Y. -J. Multiphase separation of copper nanowires. Chem. Commun. 2016, 52, 11627–11630.

29

Wu, L. Z.; Yu, J. Q.; Chen, L.; Yang, D.; Zhang, S. M.; Han, L.; Ban, M. Y.; He, L.; Xu, Y.; Zhang, Q. A general and facile approach to disperse hydrophobic nanocrystals in water with enhanced long-term stability. J. Mater. Chem. C 2017, 5, 3065–3071.

30

Hwang, C.; An, J.; Choi, B. D.; Kim, K.; Jung, S. -W.; Baeg, K. -J.; Kim, M. -G.; Ok, K. M.; Hong, J. Controlled aqueous synthesis of ultra-long copper nanowires for stretchable transparent conducting electrode. J. Mater. Chem. C 2016, 4, 1441–1447.

31

Zhan, Y. J.; Lu, Y.; Peng, C.; Lou, J. Solvothermal synthesis and mechanical characterization of single crystalline copper nanorings. J. Cryst. Growth 2011, 325, 76–80.

32

Zhou, L.; Fu, X. -F.; Yu, L.; Zhang, X.; Yu, X. -F.; Hao, Z. -H. Crystal structure and optical properties of silver nanorings. Appl. Phy. Lett. 2009, 94, 153102.

33

Halpern, A. R.; Corn, R. M. Lithographically patterned electrodeposition of gold, silver, and nickel nanoring arrays with widely tunable near-infrared plasmonic resonances. ACS Nano 2013, 7, 1755–1762.

34

Dang, T. M. D.; Le, T. T. T.; Fribourg-Blanc, E.; Dang, M. C. Synthesis and optical properties of copper nanoparticles prepared by a chemical reduction method. Adv. Nat. Sci. : Nanosci. Nanotechnol. 2011, 2, 015009.

35

Nasrollahzadeh, M.; Sajadi, S. M.; Mirzaei, Y. An efficient one-pot synthesis of 1, 4-disubstituted 1, 2, 3-triazoles at room temperature by green synthesized Cu NPs using otostegia persica leaf extract. J. Colloid. Interface Sci. 2016, 468, 156–162.

36

Cui, F.; Yu, Y.; Dou, L. T.; Sun, J. W.; Yang, Q.; Schildknecht, C.; Schierle-Arndt, K.; Yang, P. D. Synthesis of ultrathin copper nanowires using tris(trimethylsilyl)silane for high-performance and low-haze transparent conductors. Nano Lett. 2015, 15, 7610–7615.

37

Yin, Z. X.; Lee, C.; Cho, S.; Yoo, J.; Piao, Y. Z.; Kim, Y. S. Facile synthesis of oxidation-resistant copper nanowires toward solution-processable, flexible, foldable, and free-standing electrodes. Small 2014, 10, 5047–5052.

38

Ni, C. Y.; Hassan, P. A.; Kaler, E. W. Structural characteristics and growth of pentagonal silver nanorods prepared by a surfactant method. Langmuir 2005, 21, 3334–3337.

39

Yang, H. -J.; He, S. -Y.; Tuan, H. -Y. Self-seeded growth of five-fold twinned copper nanowires: Mechanistic study, characterization, and sers applications. Langmuir 2014, 30, 602–610.

40

Xia, Y. N.; Xiong, Y. J.; Lim, B.; Skrabalak, S. E. Shape-controlled synthesis of metal nanocrystals: Simple chemistry meets complex physics? Angew. Chem., Int. Ed. 2009, 48, 60–103.

41

Liu, Y. J.; Liu, X. W.; Zhan, Y. J.; Fan, H. M.; Lu, Y. Copper nanocoils synthesized through solvothermal method. Sci. Rep. 2015, 5, 16879.

42

Luo, M.; Ruditskiy, A.; Peng, H. C.; Tao, J.; Figueroa-Cosme, L.; He, Z. K.; Xia, Y. N. Penta-twinned copper nanorods: Facile synthesis via seed-mediated growth and their tunable plasmonic properties. Adv. Funct. Mater. 2016, 26, 1209–1216.

43

Pastoriza-Santos, I.; Liz-Marzán, L. M. N, N-dimeth-ylformamide as a reaction medium for metal nanoparticle synthesis. Adv. Funct. Mater. 2009, 19, 679–688.

44

Xie, J.; Zhang, X.; Zhang, H.; Zhang, J.; Li, S.; Wang, R.; Pan, B.; Xie, Y. Intralayered ostwald ripening to ultrathin nanomesh catalyst with robust oxygen-evolving performance. Adv. Mater. 2017. DOI: 10.1002/adma.201604765.

45

Li, S. J.; Chen, Y. Y.; Huang, L. J.; Pan, D. C. Large-scale synthesis of well-dispersed copper nanowires in an electric pressure cooker and their application in transparent and conductive networks. Inorg. Chem. 2014, 53, 4440–4444.

46

Reiser, B.; Gerstner, D.; Gonzalez-Garcia, L.; Maurer, J. H. M.; Kanelidis, I.; Kraus, T. Multivalent bonds in self-assembled bundles of ultrathin gold nanowires. Phy. Chem. Chem. Phy. 2016, 18, 27165–27169.

47

Reiser, B.; Gerstner, D.; Gonzalez-Garcia, L.; Maurer, J. H. M.; Kanelidis, I.; Kraus, T. Spinning hierarchical gold nanowire microfibers by shear alignment and intermolecular self-assembly. ACS Nano 2017, 11, 4934–4942.

48

Lim, G. -H.; Lee, S. J.; Han, I.; Bok, S.; Lee, J. H.; Nam, J.; Cho, J. H.; Lim, B. Polyol synthesis of silver nanostructures: Inducing the growth of nanowires by a heat-up process. Chem. Phy. Lett. 2014, 602, 10–15.

49

Lee, J. S.; Kim, N. H.; Kang, M. S.; Yu, H.; Lee, D. R.; Oh, J. H.; Chang, S. T.; Cho, J. H. Wafer-scale patterning of reduced graphene oxide electrodes by transfer-and-reverse stamping for high performance ofets. Small 2013, 9, 2817–2825.

50

Guo, H. Z.; Lin, N.; Chen, Y. Z.; Wang, Z. W.; Xie, Q. S.; Zheng, T. C.; Gao, N.; Li, S. P.; Kang, J. Y.; Cai, D. J. et al. Copper nanowires as fully transparent conductive electrodes. Sci. Rep. 2013, 3, 2323.

51

Chu, C. R.; Lee, C.; Koo, J.; Lee, H. M. Fabrication of sintering-free flexible copper nanowire/polymer composite transparent electrodes with enhanced chemical and mechanical stability. Nano Res. 2016, 9, 2162–2173.

52

Chu, H. -C.; Chang, Y. -C.; Lin, Y.; Chang, S. -H.; Chang, W. -C.; Li, G. -A.; Tuan, H. -Y. Spray-deposited large-area copper nanowire transparent conductive electrodes and their uses for touch screen applications. ACS Appl. Mater. Interfaces 2016, 8, 13009–13017.

53

Rathmell, A. R.; Wiley, B. J. The synthesis and coating of long, thin copper nanowires to make flexible, transparent conducting films on plastic substrates. Adv. Mater. 2011, 23, 4798–4803.

54

Zhang, D. P.; Wang, R. R.; Wen, M. C.; Weng, D.; Cui, X.; Sun, J.; Li, H. X.; Lu, Y. F. Synthesis of ultralong copper nanowires for high-performance transparent electrodes. J. Am. Chem. Soc. 2012, 134, 14283–14286.

55

Mayousse, C.; Celle, C.; Carella, A.; Simonato, J. -P. Synthesis and purification of long copper nanowires. Application to high performance flexible transparent electrodes with and without PEDOT: PSS. Nano Res. 2014, 7, 315–324.

56

Gaynor, W.; Burkhard, G. F.; McGehee, M. D.; Peumans, P. Smooth nanowire/polymer composite transparent electrodes. Adv. Mater. 2011, 23, 2905–2910.

57

Hu, L. B.; Kim, H. S.; Lee, J. -Y.; Peumans, P.; Cui, Y. Scalable coating and properties of transparent, flexible, silver nanowire electrodes. ACS Nano 2010, 4, 2955–2963.

58

Xu, F.; Zhu, Y. Highly conductive and stretchable silver nanowire conductors. Adv. Mater. 2012, 24, 5117–5122.

Nano Research
Pages 3899-3910
Cite this article:
Zhang Y, Guo J, Xu D, et al. Synthesis of ultrathin semicircle-shaped copper nanowires in ethanol solution for low haze flexible transparent conductors. Nano Research, 2018, 11(7): 3899-3910. https://doi.org/10.1007/s12274-018-1966-3

791

Views

26

Crossref

N/A

Web of Science

25

Scopus

0

CSCD

Altmetrics

Received: 30 September 2017
Revised: 14 December 2017
Accepted: 16 December 2017
Published: 02 August 2018
© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2018
Return