Graphical Abstract

Gold nanoparticles (Au NPs) have been widely utilized in biomedical applications owing to their attractive features and biocompatibility, which greatly increase the risk of humans' being exposed to Au NPs, including pregnant women. In contrast to mature cells, embryos are more susceptible to outside disruptive stimuli. Nonetheless, a possible inhibitory effect of nanomaterials on embryonic development is usually ignored as long as the NPs do not have significant cytotoxic effects. According to our results, a minimal "nontoxic" concentration of Au NPs during early pregnancy can have lethal inhibitory effects on embryos in vivo and in vitro. We conducted important experiments on the influence of Au NPs on embryonic development and found that Au NPs can disturb embryonic development in a size- and concentration-dependent manner. Au NPs of 15 nm in diameter downregulated the expression pattern of distinct germ layer markers both at mRNA and protein levels; this action prevented differentiation of all three embryonic germ layers. Consequently, fetal resorption was observed. Our work reveals the impact of Au NPs on embryonic development and will provide an important guidance and serve as a reference for biomedical applications of Au NPs with minimal side effects.
El-Sayed, I. H.; Huang, X. H.; El-Sayed, M. A. Surface plasmon resonance scattering and absorption of anti-egfr antibody conjugated gold nanoparticles in cancer diagnostics: Applications in oral cancer. Nano Lett. 2005, 5, 829-834.
Lin, C. A. J.; Yang, T. Y.; Lee, C. H.; Huang, S. H.; Sperling, R. A.; Zanella, M.; Li, J. K.; Shen, J. L.; Wang, H. H.; Yeh, H. -I. et al. Synthesis, characterization, and bioconjugation of fluorescent gold nanoclusters toward biological labeling applications. ACS Nano 2009, 3, 395-401.
Wu, X.; He, X. X.; Wang, K. M.; Xie, C.; Zhou, B.; Qing, Z. H. Ultrasmall near-infrared gold nanoclusters for tumor fluorescence imaging in vivo. Nanoscale 2010, 2, 2244-2249.
Leuvering, J. H. W.; Thal, P. J. M.; Schuurs, A. H. W. M. Optimization of a sandwich sol particle immunoassay for human chorionic gonadotrophin. J. Immunol. Methods 1983, 62, 175-184.
Liu, X.; Dai, Q.; Austin, L.; Coutts, J.; Knowles, G.; Zou, J. H.; Chen, H.; Huo, Q. A one-step homogeneous immunoassay for cancer biomarker detection using gold nanoparticle probes coupled with dynamic light scattering. J. Am. Chem. Soc. 2008, 130, 2780-2782.
Cheng, Z. L.; Al Zaki, A.; Hui, J. Z.; Muzykantov, V. R.; Tsourkas, A. Multifunctional nanoparticles: Cost versus benefit of adding targeting and imaging capabilities. Science 2012, 338, 903-910.
Keelan, J. A. Nanotoxicology: Nanoparticles versus the placenta. Nat. Nanotechnol. 2011, 6, 263-264.
Li, P. W.; Kuo, T. H.; Chang, J. H.; Yeh, J. M.; Chan, W. H. Induction of cytotoxicity and apoptosis in mouse blastocysts by silver nanoparticles. Toxicol. Lett. 2010, 197, 82-87.
Takeda, K.; Suzuki, K. I.; Ishihara, A.; Kubo-Irie, M.; Fujimoto, R.; Tabata, M.; Oshio, S.; Nihei, Y.; Ihara, T.; Sugamata, M. Nanoparticles transferred from pregnant mice to their offspring can damage the genital and cranial nerve systems. J. Health Sci. 2009, 55, 95-102.
Philbrook, N. A.; Winn, L. M.; Afrooz, A. R. M. N.; Saleh, N. B.; Walker, V. K. The effect of TiO2 and Ag nanoparticles on reproduction and development of Drosophila melanogaster and CD-1 mice. Toxicol. Appl. Pharmacol. 2011, 257, 429-436.
Hougaard, K. S.; Jackson, P.; Jensen, K. A.; Sloth, J. J.; Löschner, K.; Larsen, E. H.; Birkedal, R. K.; Vibenholt, A.; Boisen, A. M. Z.; Wallin, H. et al. Effects of prenatal exposure to surface-coated nanosized titanium dioxide (Uv-Titan). A study in mice. Part. Fibre Toxicol. 2010, 7, 16.
Yamashita, K.; Yoshioka, Y.; Higashisaka, K.; Mimura, K.; Morishita, Y.; Nozaki, M.; Yoshida, T.; Ogura, T.; Nabeshi, H.; Nagano, K. et al. Silica and titanium dioxide nanoparticles cause pregnancy complications in mice. Nat. Nanotechnol. 2011, 6, 321-328.
Qi, L. F.; Xu, Z. R.; Jiang, X.; Li, Y.; Wang, M. Q. Cytotoxic activities of chitosan nanoparticles and copper-loaded nanoparticles. Bioorg. Med. Chem. Lett. 2005, 15, 1397-1399.
Lim, J. H.; Kim, S. H.; Shin, I. S.; Park, N. H.; Moon, C.; Kang, S. S.; Kim, S. H.; Park, S. C.; Kim, J. C. Maternal exposure to multi-wall carbon nanotubes does not induce embryo-fetal developmental toxicity in rats. Birth Defects Res. Part B: Dev. Reprod. Toxicol. 2011, 92, 69-76.
Campagnolo, L.; Massimiani, M.; Palmieri, G.; Bernardini, R.; Sacchetti, C.; Bergamaschi, A.; Vecchione, L.; Magrini, A.; Bottini, M.; Pietroiusti, A. Biodistribution and toxicity of pegylated single wall carbon nanotubes in pregnant mice. Part. Fibre Toxicol. 2013, 10, 21-33.
Chan, W. H.; Shiao, N. H. Cytotoxic effect of cdse quantum dots on mouse embryonic development. Acta Pharmacol. Sin. 2008, 29, 259-266.
Hsieh, M. S.; Shiao, N. H.; Chan, W. H. Cytotoxic effects of CdSe quantum dots on maturation of mouse oocytes, fertilization, and fetal development. Int. J. Mol. Sci. 2009, 10, 2122-2135.
Chu, M. Q.; Wu, Q.; Yang, H.; Yuan, R. Q.; Hou, S. K.; Yang, Y. F.; Zou, Y. J.; Xu, S.; Xu, K. Y.; Ji, A. L. et al. Transfer of quantum dots from pregnant mice to pups across the placental barrier. Small 2010, 6, 670-678.
Wiwanitkit, V.; Sereemaspun, A.; Rojanathanes, R. Effect of gold nanoparticles on spermatozoa: The first world report. Fertil. Steril. 2009, 91, e7-e8.
Taylor, U.; Barchanski, A.; Petersen, S.; Kues, W. A.; Baulain, U.; Gamrad, L.; Sajti, L.; Barcikowski, S.; Rath, D. Gold nanoparticles interfere with sperm functionality by membrane adsorption without penetration. Nanotoxicology 2014, 8, 118- 127.
Tiedemann, D.; Taylor, U.; Rehbock, C.; Jakobi, J.; Klein, S.; Kues, W. A.; Barcikowski, S.; Rath, D. Reprotoxicity of gold, silver, and gold-silver alloy nanoparticles on mammalian gametes. Analyst 2014, 139, 931-942.
Yang, H.; Sun, C. J.; Fan, Z. L.; Tian, X.; Yan, L.; Du, L.; Liu, Y.; Chen, C. Y.; Liang, X. J.; Anderson, G. J. et al. Effects of gestational age and surface modification on materno-fetal transfer of nanoparticles in murine pregnancy. Sci. Rep. 2012, 2, 847.
Hui, Y.; Du, L. B.; Xin, T.; Fan, Z. L.; Sun, C. J.; Yang, L.; Keelan, J. A.; Nie, G. J. Effects of nanoparticle size and gestational age on maternal biodistribution and toxicity of gold nanoparticles in pregnant mice. Toxicol. Lett. 2014, 230, 10-18.
Xin, T.; Zhu, M. T.; Du, L. B.; Jing, W.; Fan, Z. L.; Liu, J.; Zhao, Y. L.; Nie, G. J. Intrauterine inflammation increases materno-fetal transfer of gold nanoparticles in a size-dependent manner in murine pregnancy. Small 2013, 9, 2432-2439.
Tsyganova, N. A.; Khairullin, R. M.; Terentyuk, G. S.; Khlebtsov, B. N.; Bogatyrev, V. A.; Dykman, L. A.; Erykov, S. N.; Khlebtsov, N. G. Penetration of pegylated gold nanoparticles through rat placental barrier. Bull. Exp. Biol. Med. 2014, 157, 383-385.
Semmler-Behnke, M.; Lipka, J.; Wenk, A.; Hirn, S.; Schäffler, M.; Tian, F. R.; Schmid, G.; Oberdörster, G.; Kreyling, W. G. Size dependent translocation and fetal accumulation of gold nanoparticles from maternal blood in the rat. Part. Fibre Toxicol. 2014, 11, 33.
Huo, S. D.; Jin, S. B.; Ma, X. W.; Xue, X. D.; Yang, K. N.; Kumar, A.; Wang, P. C.; Zhang, J. C.; Hu, Z. B.; Liang, X. J. Ultrasmall gold nanoparticles as carriers for nucleus-based gene therapy due to size-dependent nuclear entry. ACS Nano 2014, 8, 5852-5862.
Huang, K. Y.; Ma, H. L.; Liu, J.; Huo, S. D.; Kumar, A.; Wei, T.; Zhang, X.; Jin, S. B.; Gan, Y. L.; Wang, P. C. et al. Size-dependent localization and penetration of ultrasmall gold nanoparticles in cancer cells, multicellular spheroids, and tumors in vivo. ACS Nano 2012, 6, 4483-4493.
Huo, S. D.; Ma, H. L.; Huang, K. Y.; Liu, J.; Wei, T.; Jin, S. B.; Zhang, J. C.; He, S. T.; Liang, X. J. Superior penetration and retention behavior of 50 nm gold nanoparticles in tumors. Cancer Res. 2013, 73, 319-330.
Jiang, W.; Kim, B. Y. S.; Rutka, J. T.; Chan, W. C. W. Nanoparticle-mediated cellular response is size-dependent. Nat. Nanotechnol. 2008, 3, 145-150.
Giljohann, D. A.; Seferos, D. S.; Daniel, W. L.; Massich, M. D.; Patel, P. C.; Mirkin, C. A. Gold nanoparticles for biology and medicine. Angew. Chem., Int. Ed. 2010, 49, 3280-3294.
Nel, A. E.; Mädler, L.; Velegol, D.; Tian, X.; Hoek, E. M. V.; Somasundaran, P.; Klaessig, F.; Castranova, V.; Thompson, M. Understanding biophysicochemical interactions at the nano-bio interface. Nat. Mater. 2009, 8, 543-557.
Pan, G. J.; Thomson, J. A. Nanog and transcriptional networks in embryonic stem cell pluripotency. Cell Res. 2007, 17, 42-49.
Kraushaar, D. C.; Yamaguchi, Y.; Wang, L. C. Heparan sulfate is required for embryonic stem cells to exit from self-renewal. J. Biol. Chem. 2010, 285, 5907-5916.
He, S. H.; Nakada, D.; Morrison, S. J. Mechanisms of stem cell self-renewal. Annu. Rev. Cell Dev. Biol. 2009, 25, 377-406.
Conway, A.; Vazin, T.; Spelke, D. P.; Rode, N. A.; Healy, K. E.; Kane, R. S.; Schaffer, D. V. Multivalent ligands control stem cell behaviour in vitro and in vivo. Nat. Nanotechnol. 2013, 8, 831-838.
Ren, M. M.; Han, Z.; Li, J. L.; Feng, G.; Ouyang, S. Y. Ascorbic acid delivered by mesoporous silica nanoparticles induces the differentiation of human embryonic stem cells into cardio-myocytes. Mater. Sci. Eng., C 2015, 56, 348-355.
Smith, L. A.; Liu, X. H.; Hu, J.; Ma, P. X. The enhancement of human embryonic stem cell osteogenic differentiation with nano-fibrous scaffolding. Biomaterials 2010, 31, 5526-5535.
Pelton, T. A.; Bettess, M. D.; Lake, J.; Rathjen, J.; Rathjen, P. D. Developmental complexity of early mammalian pluripotent cell populations in vivo and in vitro. Reprod. Fertil. Dev. 1998, 10, 535-549.
Guo, S. T.; Huang, Y. Y.; Jiang, Q.; Sun, Y.; Deng, L. D.; Liang, Z. C.; Du, Q.; Xing, J. F.; Zhao, Y. L.; Wang, P. C. et al. Enhanced gene delivery and siRNA silencing by gold nano-particles coated with charge-reversal polyelectrolyte. ACS Nano 2010, 4, 5505-5511.
Li, F.; Li, T. Y.; Sun, C. X.; Xia, J. H.; Jiao, Y.; Xu, H. P. Selenium-doped carbon quantum dots for free-radical scav-enging. Angew. Chem., Int. Ed. 2017, 56, 9910-9914.
Chung, M. F.; Liu, H. Y.; Lin, K. J.; Chia, W. T.; Sung, H. W. A Ph-responsive carrier system that generates No bubbles to trigger drug release and reverse P-glycoprotein-mediated multidrug resistance. Angew. Chem., Int. Ed. 2015, 54, 9890-9893.
Cao-Milán, R.; Liz-Marzán, L. M. Gold nanoparticle conjugates: Recent advances toward clinical applications. Expert Opin. Drug Deliv. 2014, 11, 741-752.
Shukla, R.; Bansal, V.; Chaudhary, M.; Basu, A.; Bhonde, R. R.; Sastry, M. Biocompatibility of gold nanoparticles and their endocytotic fate inside the cellular compartment: A microscopic overview. Langmuir 2005, 21, 10644-10654.