Graphical Abstract

Monolayer transition metal dichalcogenides (TMDCs), as direct bandgap semiconductors, show promise for applications in ultra-thin flexible optoelectronic devices. However, the optical properties and device performance are greatly affected by defects, such as vacancies, present in these materials. Vacancies exist unavoidably in mechanically exfoliated or grown by chemical vapor deposition (CVD) monolayer TMDCs; therefore, their influence on the electric and optical properties of host materials has been widely studied. Here, we report a new defect state located at 1.54 eV, which is 70 meV lower than the neutral exciton energy in as-prepared MoS2 monolayers grown by CVD. This defect state is clearly observed in photoluminescence (PL) and Raman spectra at ambient conditions. PL mapping, Raman mapping, and atomic force microscopy analysis indicate a solid-vapor reaction growth mechanism of the defect state formation. During a certain growth stage, nuclei with the composition of WOxSey do not fully react with the Se vapor, leading to the defect formation. This type of defects permits radiative recombination of bound neutral excitons, which can make the PL intensity as strong as the intrinsic excitation. Our findings reveal a new way to tailor the optical properties of two-dimensional TMDCs without any additional processes performed after growth.
Mak, K. K.; Lee, C.; Hone, J.; Shan, J.; Heinz, T. F. Atomically Thin MoS2: A new direct-gap semiconductor. Phys. Rev. Lett. 2010, 105, 136805.
Zeng, H. L.; Dai, J. F.; Yao, W.; Xiao, D.; Cui, X. D. Valley polarization in MoS2 monolayers by optical pumping. Nat. Nanotechnol. 2012, 7, 490–493.
Radisavljevic, B.; Radenovic, A.; Brivio, J.; Giacometti, V.; Kis, A. Single-layer MoS2 transistors. Nat. Nanotechnol. 2011, 6, 147–150.
Wang, Q. H.; Kalantar-Zadeh, K.; Kis, A.; Coleman, J. N.; Strano, M. S. Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. Nat. Nanotechnol. 2012, 7, 699–712.
Splendiani, A.; Sun, L.; Zhang, Y. B.; Li, T. S.; Kim, J.; Chim, C. Y; Galli, G.; Wang, F. Emerging photoluminescence in monolayer MoS2. Nano Lett. 2010, 10, 1271–1275.
Zhao, W. J.; Ghorannevis, Z.; Chu, L.Q.; Toh, M.; Kloc, C.; Tan, P. H.; Eda, G. Evolution of electronic structure in atomically thin sheets of WS2 and MoS2. ACS Nano 2013, 7, 791–797.
Berkelbach, T. C.; Hybertsen, M. S.; Reichman, D. R. Theory of neutral and charged excitons in monolayer transition metal dichalcogenides. Phys. Rev. B 2013, 88, 045318.
He, K. L.; Kumar, N.; Zhao, L.; Wang, Z. F.; Mak, K. F.; Zhao, H.; Shan, J. Tightly bound excitons in monolayer MoS2. Phys. Rev. Lett. 2014, 133, 026803.
Mak, K. F.; He, K. L.; Lee, C.; Lee, G. H.; Hone, J.; Heinzand, T. F.; Shan, J. Tightly bound trions in monolayer MoS2. Nat. Mater. 2013, 12, 207–211.
Ross, J. S.; Wu, S. F.; Yu, H. Y.; Ghimire, N. J.; Jones, A. M.; Aivazian, G.; Yan, J. Q.; Mandrus, D. G.; Xiao, D.; Yao, W. et al. Electrical control of neutral and charged excitons in a monolayer semiconductor. Nat. Common. 2013, 4, 1474.
You, Y. M.; Zhang, X. X.; Berkelbach, Y. C.; Hybertsen, M. S.; Reichmanand, D. R.; Heinz, T. F. Observation of biexcitons in monolayer MoS2. Nat. Phys. 2015, 11, 477–481.
Shang, J. Z.; Shen, X. N.; Cong, C. X.; Peimyoo, N.; Cao, B. C.; Eginligil, M.; Yu, T. Observation of excitonic fine structure in a 2D transition-metal dichalcogenide semiconductor. ACS Nano 2015, 9, 647–655.
Kim, M. S.; Yun, S. J.; Lee, Y.; Seo, C.; Han, G. H.; Kim, K. K.; Lee, Y. H.; Kim, J. Biexciton emission from edges and grain boundaries of triangular WS2 monolayers. ACS Nano 2016, 10, 2399–2405.
He, Z. Y.; Xu, W. S.; Zhou, Y. Q.; Wang, X. C.; Sheng, Y. W.; Rong, Y. M.; Guo, S. Q.; Zhang, J. Y.; Smith, J. M.; Warner, J. H. Biexciton formation in bilayer tungsten disulfide. ACS Nano 2016, 10, 2176–2183.
Wang, X. Q.; Chen, Y. F.; Zheng, V. J.; Qi, F.; He, J. R.; Li, P. J.; Zhang, W. L. Few-layered MoS2 nanoflowers anchored on graphene nanosheets: A highly efficient and stable electrocatalyst for hydrogen evolution. Electrochimica Acta 2016, 222, 1293–1299.
Wang, X. Q.; Chen, Y. F.; Qi, F.; Zheng, B. J.; He, J. R.; Li, Q.; Li, P. J.; Zhang, W. L.; Li, Y. R. Interwoven MoS2/CNTs hybrid network: A highly efficient and stable electrocatalyst for hydrogen evolution. Electrochem. Common. 2016, 72, 74–78.
Yu, B.; Zheng, B. J.; Wang, X. Q.; Qi, F.; He, J. R.; Zhang, W. L.; Chen, Y. F. Enhanced photocatalytic properties of graphene modified few-layered MoS2 nanosheets. Appl. Surface Sci. 2017, 400, 420–425.
Wang, X. Q.; Chen, Y. F.; Zheng, B. J.; Qi, F.; He, J. R.; Li, Q.; Li, P. J.; Zhang, Q. L. Graphene-like MoS2 nanosheets for efficient and stable hydrogen evolution. J. Alloys Compd. 2017, 691, 698–704.
Zheng, B. J.; Chen, Y. F.; Wang, Z. G.; Qi, F.; Huang, Z. S.; Hao, X.; Li, P. J.; Zhang, W. L.; Li, Y. R. Vertically oriented few-layered HfS2 nanosheets: Growth mechanism and optical properties. 2D Mater. 2016, 3, 035024.
Zheng, B. J.; Chen, Y. F.; Qi, F.; Wang, X. Q.; Zhang, W. L.; Li, Y. R.; Li, X. S. 3D-hierarchical MoSe2 nanoarchitecture as a highly efficient electrocatalyst for hydrogen evolution. 2D Mater 2017, 4, 025092.
Van der Zande, A. M.; Huang, P. Y.; Chenet, D. A.; Berkelbach, T. C.; You, Y. M.; Lee, G. H.; Heinz, T. F.; Reichman, D. R.; Muller, D. A.; Hone, J. C. Grains and grain boundaries in highly crystalline monolayer molybdenum disulphide. Nat. Mater. 2013, 12, 554–561.
Zhou, W.; Zou, X. L.; Najmaei, S.; Liu, Z.; Shi, Y. M.; Kong, J.; Lou, J.; Ajayan, O. M.; Yakobson, B. I.; Idrobo, J. C. Intrinsic structural defects in monolayer molybdenum disulfide. Nano Lett. 2013, 13, 2615–2622.
Najmaei, S.; Liu, Z.; Zhou, W.; Zou, Z. L.; Shi, G.; Lei, S. D.; Yakobson, B. I.; Idrobo, J. C.; Ajayan, P. M.; Lou, J. Vapour phase growth and grain boundary structure of molybdenum disulphide atomic layers. Nat. Mater. 2013, 12, 754–759.
Tongay, S.; Zhou, J.; Ataca, C.; Liu, J.; Kang, J. S.; Matthews, T. S.; You, L.; Li, J. B.; Grossman, J. C.; Wu, J. Q. Broad-range modulation of light emission in two-dimensional semiconductors by molecular physisorption gating. Nano Lett. 2013, 13, 2831–2836.
Peimyoo, N.; Yang, W. H.; Shang, J. Z.; Shen, X. N.; Wang, Y. L.; Yu, T. Chemically driven tunable light emission of charged and neutral excitons in monolayer WS2. ACS Nano 2014, 8, 11320–11329.
Lin, Y. X.; Ling, X.; Yu, L. L.; Huang, S. X.; Hsu, A. L.; Lee, Y. H.; Kong, J.; Dresselhaus, M. S.; Palacios, T. Dielectric screening of excitons and trions in single-layer MoS2. Nano Lett. 2014, 14, 5569–5576.
Shu, H. B.; Li, Y. H.; Niu, X. H.; Wang, J. L. Greatly enhanced optical absorption of a defective MoS2 monolayer through oxygen passivation. ACSAppl. Mater. Interfaces 2016, 8, 13150–13156.
Mouri, S.; Miyauchi, Y.; Matsuda, K. Tunable photoluminescence of monolayer MoS2 via chemical doping. Nano Lett. 2013, 13, 5944–5948.
Liu, Z.; Amani, M.; Najmaei, S.; Xu, Q.; Zou, X. L.; Zhou, W.; Yu, T.; Qiu, C. Y.; Birdwell, A. G.; Crowne, F. J. et al. Strain and structure heterogeneity in MoS2 atomic layers grown by chemical vapour deposition. Nat. Common. 2014, 5, 5246.
Huang, J. K.; Pu, J.; Hsu, C. L.; Chiu, M. H.; Juang, Z. Y.; Chang, Y. H.; Chang, W. H.; Iwasa, Y.; Takenobu, T.; Li, L. J. Large-area synthesis of highly crystalline MoS2 monolayers and device applications. ACS Nano 2014, 8, 923–930.
Liu, B. L.; Fathi, M.; Chen, L.; Abbas, A.; Ma, Y. Q.; Zhou, C. W. Chemical vapor deposition growth of monolayer MoS2 with tunable device characteristics and growth mechanism study. ACS Nano 2015, 9, 6119–6127.
Clark, G.; Wu, S. F.; Rivera, P.; Finney, J.; Nguyen, P.; Cobden, D. H.; Xu, X. D. Vapor-transport growth of high optical quality MoS2 monolayers. APPL Mater. 2014, 2, 101101.
Zhou, H. L.; Wang, C.; Shaw, J. C.; Cheng, R.; Chen, Y.; Huang, X. Q.; Liu, Y; Weiss, N. O.; Lin, Z. Y.; Huang, Y. et al. Large area growth and electrical properties of p-type MoS2 atomic layers. Nano Lett. 2015, 15, 709–713.
Tongay, S.; Suh, J.; Ataca, C.; Fan, W.; Luce, A.; Kang, J. S.; Liu, J.; Ko, C.; Raghunathanan, R.; Zhou, J. et al. Defects activated photoluminescence in two-dimensional semiconductors: Interplay between bound, charged, and free excitons. Sci. Rep. 2013, 3, 2657.
Chow, P. K.; Jacobs-Gedrim, R. B.; Gao, J.; Lu, T. M.; Yu, B.; Terrones, H.; Koratkar, N. Defect-Induced photoluminescence in monolayer semiconducting transition metal dichalcogenides. ACS Nano 2015, 9, 1520–1527.
Saigal, N.; Ghosh, S. Evidence for two distinct defect related luminescence features in monolayer MoS2. Appl. Phys. Lett. 2016, 109, 122105.
Shi, W.; Lin, M. L.; Tan, Q. H.; Qiao, X. F.; Zhang, J.; Tan, P. H. Raman and photoluminescence spectra of two-dimensional nanocrystallites of monolayer WS2 and MoS2. 2D Mater. 2016, 3, 025016.
He, Z. Y.; Wang, X. C.; Xu, W. S.; Zhou, Y. Q.; Sheng, Y. W.; Rong, Y M.; Smith, J. M.; Warner, J. H. Revealing defect-state photoluminescence in monolayer WS2 by cryogenic laser processing. ACS Nano 2016, 10, 5847–5855.
Wang, Y. L.; Cong, C. X.; Qiu, C. Y; Yu, T. Raman spectroscopy study of lattice vibration and crystallographic orientation of monolayer MoS2 under uniaxial strain. Small 2013, 9, 2857–2861.
Li, B.; Gong, Y. J.; Hu, Z. L.; Brunetto, G.; Yang, Y. C.; Ye, G. L.; Zhang, Z. H.; Lei, S. D.; Jin, Z. H.; Bianco, E. et al. Solid-vapor reaction growth of transition-metal dichalcogenide monolayers. Angew. Chem., Int. Ed 2016, 55, 10656–10661.
Tonndorf, P.; Schmidt, R.; Bottger, P.; Zhang, X.; Borner, J.; Liebig, A.; Albrecht, M.; Kloc, C.; Gordan, O.; Zahn, D. R. T. et al. Photoluminescence emission and Raman response of monolayer MoS2, MoSe2, and MoS2. Opt. Express 2013, 21, 4908–4916.
Cong, C. X.; Shang, J. Z.; Wu, X.; Cao, B. C.; Peimyoo, N.; Qiu, C. Y.; Sun, L. T.; Yu, T. Synthesis and optical properties of large-are a single-crystalline 2D semiconductor WS2 monolayer from chemical vapor deposition. Adv. Opt. Mater. 2014, 2, 131–136.
Peimyoo, N.; Shang, J. Z.; Cong, C. X.; Shen, X. N.; Wu, X. Y.; Yeow, E. K. L.; Yu, T. Non blinking, intense two-dimensional light emitter: Monolayer WS2 triangles. ACS Nano 2013, 7, 10985–10994.
Schmidt, T.; Lischka, K.; Zulehner, W. Excitation-power dependence of the near-band-edge photoluminescence of semiconductors. Phys. Rev. B 1992, 45, 8989–8994.
Wu, W. T.; Luo, Z. Z.; Shen, Y. T.; Zhao, W. W.; Wang, W. H.; Nan, H. Y.; Guo, X. T.; Sun, L. T.; Wang, X. R.; You, Y. M. et al. Defects as a factor limiting carrier mobility in MoS2 A spectroscopic investigation. Nano Res. 2016, 9, 3622–3631.
Nan, H. Y.; Wang, Z. L.; Wang, W. H.; Liang, Z.; Lu, Y.; Chen, Q.; He, D. W.; Tan, P. H.; Miao, F.; Wang, X. R.; et al. Strong photoluminescence enhancement of MoS2 through defect engineering and oxygen bonding. ACS Nano 2014, 8, 5738–5745.
Kang, N.; Paudel, H. P.; Leuenberger, M. N.; Tetard, L.; Khondaker, S. I. Photoluminescence quenching in single-layer MoS2 via oxygen plasma treatment. J. Phys. Chem. C 2014, 118, 21258–21263.
Islam, M. R.; Kang, N.; Bhanu, U.; Paudel, H. P.; Erementchouk, M.; Tetard, L.; Leuenberger, M. N.; Khondaker, S. I. Tuning the electrical property via defect engineering of single layer MoS2 by oxygen plasma. Nanoscale 2014, 6, 10033–10039.