AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Hybrid electrolyte with robust garnet-ceramic electrolyte for lithium anode protection in lithium-oxygen batteries

Jin Wang1,2Yanbin Yin1,2Tong Liu1Xiaoyang Yang1,2Zhiwen Chang1,3Xinbo Zhang1( )
State Key Laboratory of Rare Earth Resource UtilizationChangchun Institute of Applied ChemistryChinese Academy of SciencesChangchun130022China
Key Laboratory of Automobile MaterialsMinistry of Education and College of Materials Science and EngineeringJilin UniversityChangchun130012China
University of Chinese Academy of SciencesBeijing100049China
Show Author Information

Graphical Abstract

Abstract

Rechargeable lithium-oxygen (Li-O2) batteries have received intensive research interest due to its ultrahigh energy density, while its cycle stability is still hindered by the high reactivity of the Li anode with oxygen and moisture. To alleviate the corrosion of the metallic lithium anodes for achieving a stable Li-O2 battery, and as a proof-of-concept experiment, a distinctive hybrid electrolyte system with an organic/ceramic/organic electrolyte (OCOE) architecture is designed. Importantly, the cycle number of Li-O2 batteries with OCOE is significantly improved compared with batteries with an organic electrolyte (OE). This might be attributed to the effective suppression of the lithium anode corrosion caused by the OE degradation and the crossover of oxygen from the cathode. We consider that our facile, low-cost, and highly effective lithium protection strategy presents a new avenue to address the daunting corrosion problem of lithium metal anodes in Li-O2 batteries. In addition, the proposed strategy can be easily extended to other metal-O2 battery systems, such as Na-O2 batteries.

Electronic Supplementary Material

Download File(s)
12274_2018_1972_MOESM1_ESM.pdf (1.6 MB)

References

1

Bruce, P. G.; Freunberger, S. A.; Hardwick, L. J.; Tarascon, J. M. Li-O2 and Li-S batteries with high energy storage. Nat. Mater. 2012, 11, 19-29.

2

Chu, S.; Cui, Y.; Liu, N. The path towards sustainable energy. Nat. Mater. 2017, 16, 16-22.

3

Goodenough, J B. Changing outlook for rechargeable batteries. ACS Catal. 2017, 7, 1132-1135.

4

Xu, J. J.; Liu, Q. C.; Yu, Y.; Wang, J.; Yan, J. M.; Zhang, X. B. In situ construction of stable tissue-directed/reinforced bifunctional separator/protection film on lithium anode for lithium-oxygen batteries. Adv. Mater. 2017, 29, 1606552.

5

Freunberger, S. A.; Chen, Y. H.; Drewett, N. E.; Hardwick, L. J.; Bardé, F.; Bruce, P. G. The lithium-oxygen battery with ether- based electrolytes. Angew. Chem., Int. Ed. 2011, 50, 8609-8613.

6

Kim, B. G.; Kim, J. S.; Min, J.; Lee, Y. H.; Choi, J. H.; Jang, M. C.; Freunberger, S. A.; Choi, J. W. A moisture- and oxygen-impermeable separator for aprotic Li-O2 batteries. Adv. Funct. Mater. 2016, 26, 1747-1756.

7

Liu, B.; Xu, W.; Yan, P. F.; Kim, S. T.; Engelhard, M. H.; Sun, X. L.; Mei, D. H.; Cho, J.; Wang, C. M.; Zhang, J. G. Stabilization of Li metal anode in DMSO-based electrolytes via optimization of salt-solvent coordination for Li-O2 batteries. Adv. Energy Mater. 2017, 7, 1602605.

8

Liu, Q. C.; Xu, J. J.; Yuan, S.; Chang, Z. W.; Xu, D.; Yin, Y. B.; Li, L.; Zhong, H. X.; Jiang, Y. S.; Yan, J. M.; Zhang, X. B. Artificial protection film on lithium metal anode toward long-cycle-life lithium-oxygen batteries. Adv. Mater. 2015, 27, 5241-5247.

9

Balaish, M.; Peled, E.; Golodnitsky, D.; Ein-Eli, Y. Liquid-free lithium-oxygen batteries. Angew. Chem., Int. Ed. 2015, 54, 436-440.

10

Elia, G. A.; Hassoun, J. A polymer lithium-oxygen battery. Sci. Rep. 2015, 5, 12307.

11

Wu, C.; Liao, C. B.; Li, T. R.; Shi, Y. Q.; Luo, J. S.; Li, L.; Yang, J. A polymer lithium-oxygen battery based on semi-polymeric conducting ionomers as the polymer electrolyte. J. Mater. Chem. A 2016, 4, 15189-15196.

12

Han, F. D.; Zhu, Y. Z.; He, X. F.; Mo, Y. F.; Wang, C. S. Electrochemical stability of Li10GeP2S12 and Li7La3Zr2O12 solid electrolytes. Adv. Energy Mater. 2016, 6, 1501590.

13

Janek, J.; Zeier, W. G. A solid future for battery development. Nat. Energy 2016, 1, 16141.

14

Li, F. J.; Kitaura, H.; Zhou, H. S. The pursuit of rechargeable solid-state Li-air batteries. Energy Environ. Sci. 2013, 6, 2302-2311.

15

Li, Y. Q.; Cao, Y.; Guo, X. X. Influence of lithium oxide additives on densification and ionic conductivity of garnet-type Li6.75La3Zr1.75Ta0.25O12 solid electrolytes. Solid State Ionics 2013, 253, 76-80.

16

Ma, C.; Cheng, Y. Q.; Yin, K. B.; Luo, J.; Sharafi, A.; Sakamoto, J.; Li, J. C.; More, K. L.; Dudney, N. J.; Chi, M. F. Interfacial stability of Li metal-solid electrolyte elucidated via in situ electron microscopy. Nano Lett. 2016, 16, 7030-7036.

17

Sharafi, A.; Yu, S.; Naguib, M.; Lee, M.; Ma, C.; Meyer, H. M.; Nanda, J.; Chi, M.; Siegel, D. J.; Sakamoto, J. Impact of air exposure and surface chemistry on Li-Li7La3Zr2O12 interfacial resistance. J. Mater. Chem. A 2017, 5, 13475-13487.

18

Xia, W. H.; Xu, B. N.; Duan, H. N.; Guo, Y. P.; Kang, H. M.; Li, H.; Liu, H. Z. Ionic conductivity and air stability of Al-doped Li7La3Zr2O12 sintered in alumina and Pt crucibles. ACS Appl. Mater. Interfaces 2016, 8, 5335-5342.

19

Xia, W. H.; Xu, B. Y.; Duan, H. N.; Tang, X. Y.; Guo, Y. P.; Kang, H. M.; Li, H.; Liu, H. Z. Reaction mechanisms of lithium garnet pellets in ambient air: The effect of humidity and CO2. J. Am. Ceram. Soc. 2017, 100, 2832-2839.

20

van den Broek, J.; Afyon, S.; Rupp, J. L. M. Interface- engineered all-solid-state Li-ion batteries based on garnet-type fast Li+ conductors. Adv. Energy Mater. 2016, 6, 1600736.

21

Fu, K.; Gong, Y. H.; Hitz, G. T.; McOwen, D. W.; Li, Y. J.; Xu, S. M.; Wen, Y.; Zhang, L.; Wang, C. W.; Pastel, G. et al. Three-dimensional bilayer garnet solid electrolyte based high energy density lithium metal-sulfur batteries. Energy Environ. Sci. 2017, 10, 1568-1575.

22

Wang, C. W.; Gong, Y. H.; Liu, B. Y.; Fu, K.; Yao, Y. G.; Hitz, E.; Li, Y. J.; Dai, J. Q.; Xu, S. M.; Luo, W. et al. Conformal, nanoscale ZnO surface modification of garnet-based solid-state electrolyte for lithium metal anodes. Nano Lett. 2017, 17, 565-571.

23

Rodrigues, M. T. F.; Babu, G.; Gullapalli, H.; Kalaga, K.; Sayed, F. N.; Kato, K.; Joyner, J.; Ajayan, P. M. A materials perspective on Li-ion batteries at extreme temperatures. Nat. Energy 2017, 2, 17108.

24

Yi, J.; Liu, Y.; Qiao, Y.; He, P.; Zhou, H. S. Boosting the cycle life of Li-O2 batteries at elevated temperature by employing a hybrid polymer-ceramic solid electrolyte. ACS Energy Lett. 2017, 2, 1378-1384.

25

Murugan, R.; Thangadurai, V.; Weppner, W. Fast lithium ion conduction in garnet-type Li7La3Zr2O12. Angew. Chem., Int. Ed. 2007, 46, 7778-7781.

26

Afyon, S.; Krumeich, F.; Rupp, J. L. M. A shortcut to garnet-type fast Li-ion conductors for all-solid state batteries. J. Mater. Chem. A 2015, 3, 18636.

27

Liu, K.; Ma, J. T.; Wang, C. A. Excess lithium salt functions more than compensating for lithium loss when synthesizing Li6.5La3Zr1.75Ta1.5O12 in alumina crucible. J. Power Sources 2014, 260, 109-114.

28

Li, Y. T.; Han, J. T.; Wang, C. A.; Xie, H.; Goodenough, J. B. Optimizing Li+ conductivity in a garnet framework. J. Mater. Chem. 2012, 22, 15357-15361.

29

Xu, B. Y.; Duan, H. N.; Liu, H. Z.; Wang, C. A.; Zhong, S. W. Stabilization of garnet/liquid electrolyte interface using superbase additives for hybrid Li batteries. ACS Appl. Mater. Interfaces 2017, 9, 21077-21082.

30

Zhou, B.; Guo, L. M.; Zhang, Y. T.; Wang, J. W.; Ma, L. P.; Zhang, W. H.; Fu, Z. W.; Peng, Z. Q. A high-performance Li-O2 battery with a strongly solvating hexamethylphosphoramide electrolyte and a LiPON-protected lithium anode. Adv. Mater. 2017, 29, 1701568.

31

Xu, J. J.; Chang, Z. W.; Yin, Y. B.; Zhang, X. B. Nanoengineered ultralight and robust all-metal cathode for high-capacity, stable lithium-oxygen batteries. ACS Cent. Sci. 2017, 3, 598-604.

32

Xu, J. J.; Wang, Z. L.; Xu, D.; Meng, F. Z.; Zhang, X. B. 3D ordered macroporous LaFeO3 as efficient electrocatalyst for Li-O2 batteries with enhanced rate capability and cyclic performance. Energy Environ. Sci. 2014, 7, 2213-2219.

33

Wu, S. C.; Qiao, Y.; Yang, S. X.; Ishida, M.; He, P.; Zhou, H. S. Organic hydrogen peroxide-driven low charge potentials for high-performance lithium-oxygen batteries with carbon cathodes. Nat. Commun. 2017, 8, 15607.

Nano Research
Pages 3434-3441
Cite this article:
Wang J, Yin Y, Liu T, et al. Hybrid electrolyte with robust garnet-ceramic electrolyte for lithium anode protection in lithium-oxygen batteries. Nano Research, 2018, 11(6): 3434-3441. https://doi.org/10.1007/s12274-018-1972-5
Part of a topical collection:

731

Views

49

Crossref

N/A

Web of Science

49

Scopus

10

CSCD

Altmetrics

Received: 14 October 2017
Revised: 04 December 2017
Accepted: 23 December 2017
Published: 22 May 2018
© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2018
Return