AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Hierarchical sodium-rich Prussian blue hollow nanospheres as high-performance cathode for sodium-ion batteries

Xiao Tang1Hao Liu1Dawei Su1Peter H. L. Notten2,3Guoxiu Wang1( )
Center for Clean Energy TechnologyFaculty of ScienceUniversity of Technology SydneySydneyNSW2007Australia
Department of Chemical Engineering and ChemistryEindhoven University of TechnologyEindhoven, 5600 MBThe Netherlands
Fundamental Electrochemistry (IEK9)Forschungszentrum Jülich, Jülich, D-52425Germany
Show Author Information

Graphical Abstract

Abstract

Recently, Prussian blue and its analogues (PBAs) have attracted tremendous attention as cathode materials for sodium-ion batteries because of their good cycling performance, low cost, and environmental friendliness. However, they still suffer from kinetic problems associated with the solid-state diffusion of sodium ions during charge and discharge processes, which leads to low specific capacity and poor rate performances. In this work, novel sodium iron hexacyanoferrate nanospheres with a hierarchical hollow architecture have been fabricated as cathode material for sodium-ion batteries by a facile template method. Due to the unique hollow sphere morphology, sodium iron hexacyanoferrate nanospheres can provide large numbers of active sites and high diffusion dynamics for sodium ions, thus delivering a high specific capacity (142 mAh/g), a superior rate capability, and an excellent cycling stability. Furthermore, the sodium insertion/extraction mechanism has been studied by in situ X-ray diffraction, which provides further insight into the crystal structure change of the sodium iron hexacyanoferrate nanosphere cathode material during charge and discharge processes.

Electronic Supplementary Material

Download File(s)
12274_2018_1979_MOESM1_ESM.pdf (1.9 MB)

References

1

Armand, M.; Tarascon, J. M. Building better batteries. Nature 2008, 451, 652-657.

2

Kim, S. W.; Seo, D. H.; Ma, X. H.; Ceder, G.; Kang, K. Electrode materials for rechargeable sodium-ion batteries: Potential alternatives to current lithium-ion batteries. Adv. Energy Mater. 2012, 2, 710-721.

3

Ong, S. P.; Chevrier, V. L.; Hautier, G.; Jain, A.; Moore, C.; Kim, S.; Ma, X. H.; Ceder, G. Voltage, stability and diffusion barrier differences between sodium-ion and lithium-ion intercalation materials. Energy Environ. Sci. 2011, 4, 3680-3688.

4

Lee, H. W.; Wang, R. Y.; Pasta, M.; Lee, S. W.; Liu, N.; Cui, Y. Manganese hexacyanomanganate open framework as a high-capacity positive electrode material for sodium-ion batteries. Nat. Commun. 2014, 5, 5280.

5

Song, J.; Wang, L.; Lu, Y. H.; Liu, J.; Guo, B. K.; Xiao, P. H.; Lee, J. J.; Yang, X. Q.; Henkelman, G.; Goodenough, J. B. Removal of interstitial H2O in hexacyanometallates for a superior cathode of a sodium-ion battery. J. Am. Chem. Soc. 2015, 137, 2658-2664.

6

Liu, Q. N.; Hu, Z.; Chen, M. Z.; Gu, Q. F.; Dou, Y. H.; Sun, Z. Q.; Chou, S. L.; Dou, S. X. Multiangular rod-shaped Na0.44MnO2 as cathode materials with high rate and long life for sodium-ion batteries. ACS Appl. Mater. Interfaces 2017, 9, 3644-3652.

7

Jian, Z. L.; Han, W. Z.; Lu, X.; Yang, H. X.; Hu, Y. S.; Zhou, J.; Zhou, Z. B.; Li, J. Q.; Chen, W.; Chen, D. F. et al. Superior electrochemical performance and storage mechanism of Na3V2(PO4)3 cathode for room-temperature sodium-ion batteries. Adv. Energy Mater. 2013, 3, 156-160.

8

Kim, D.; Kang, S. H.; Slater, M.; Rood, S.; Vaughey, J. T.; Karan, N.; Balasubramanian, M.; Johnson, C. S. Enabling sodium batteries using lithium-substituted sodium layered transition metal oxide cathodes. Adv. Energy Mater. 2011, 1, 333-336.

9

Chen, M. Z.; Chen, L. N.; Hu, Z.; Liu, Q. N.; Zhang, B. W.; Hu, Y. X.; Gu, Q. F.; Wang, J. L.; Wang, L. Z.; Guo, X. D. et al. Carbon-coated Na3.32Fe2.34(P2O7)2 cathode material for high-rate and long-life sodium-ion batteries. Adv. Mater. 2017, 29, 1605535.

10

Neff, V. D. Electrochemical oxidation and reduction of thin films of Prussian blue. J. Electrochem. Soc. 1978, 125, 886-887.

11

Yue, Y. F.; Binder, A. J.; Guo, B. K.; Zhang, Z. Y.; Qiao, Z. A.; Tian, C. C.; Dai, S. Mesoporous Prussian blue analogues: Template-free synthesis and sodium-ion battery applications. Angew. Chem., Int. Ed. 2014, 53, 3134-3137.

12

Lu, Y. H.; Wang, L.; Cheng, J. G.; Goodenough, J. B. Prussian blue: A new framework of electrode materials for sodium batteries. Chem. Commun. 2012, 48, 6544-6546.

13

Wang, L.; Lu, Y. H.; Liu, J.; Xu, M. W.; Cheng, J. G.; Zhang, D. W.; Goodenough, J. B. A superior low-cost cathode for a Na-ion battery. Angew. Chem., Int. Ed. 2013, 52, 1964-1967.

14

You, Y.; Wu, X. L.; Yin, Y. X.; Guo, Y. G. High-quality Prussian blue crystals as superior cathode materials for room-temperature sodium-ion batteries. Energy Environ. Sci. 2014, 7, 1643-1647.

15

Jiang, Y. Z.; Yu, S. L.; Wang, B. Q.; Li, Y.; Sun, W. P.; Lu, Y. H.; Yan, M.; Song, B.; Dou, S. X. Prussian blue@C composite as an ultrahigh-rate and long-life sodium-ion battery cathode. Adv. Funct. Mater. 2016, 26, 5315-5321.

16

Wang, R. Y.; Wessells, C. D.; Huggins, R. A.; Cui, Y. Highly reversible open framework nanoscale electrodes for divalent ion batteries. Nano Lett. 2013, 13, 5748-5752.

17

Su, D. W.; McDonagh, A.; Qiao, S. Z.; Wang, G. X. High-capacity aqueous potassium-ion batteries for large-scale energy storage. Adv. Mater. 2017, 29, 1604007.

18

Matsuda, T.; Takachi, M.; Moritomo, Y. A sodium manganese ferrocyanide thin film for Na-ion batteries. Chem. Commun. 2013, 49, 2750-2752.

19

Wu, X. Y.; Luo, Y.; Sun, M. Y.; Qian, J. F.; Cao, Y. L.; Ai, X. P.; Yang, H. X. Low-defect Prussian blue nanocubes as high capacity and long life cathodes for aqueous Na-ion batteries. Nano Energy 2015, 13, 117-123.

20

Wu, X. Y.; Sun, M. Y.; Shen, Y. F.; Qian, J. F.; Cao, Y. L.; Ai, X. P.; Yang, H. X. Energetic aqueous rechargeable sodium-ion battery based on Na2CuFe(CN)6-NaTi2(PO4)3 intercalation chemistry. ChemSusChem 2014, 7, 407-411.

21

Wu, X. Y.; Cao, Y. L.; Ai, X. P.; Qian, J. F.; Yang, H. X. A low-cost and environmentally benign aqueous rechargeable sodium-ion battery based on NaTi2(PO4)3-Na2NiFe(CN)6 intercalation chemistry. Electrochem. Commun. 2013, 31, 145-148.

22

Wang, L.; Song, J.; Qiao, R. M.; Wray, L. A.; Hossain, M. A.; Chuang, Y. D.; Yang, W. L.; Lu, Y. H.; Evans, D.; Lee, J. J. et al. Rhombohedral Prussian white as cathode for rechargeable sodium-ion batteries. J. Am. Chem. Soc. 2015, 137, 2548-2554.

23

Wu, X. Y.; Jian, Z. L.; Li, Z. F.; Ji, X. L. Prussian white analogues as promising cathode for non-aqueous potassium-ion batteries. Electrochem. Commun. 2017, 77, 54-57.

24

You, Y.; Yu, X. Q.; Yin, Y. X.; Nam, K. W.; Guo, Y. G. Sodium iron hexacyanoferrate with high Na content as a Na-rich cathode material for Na-ion batteries. Nano Res. 2015, 8, 117-128.

25

He, G.; Nazar, L. F. Crystallite size control of Prussian white analogues for nonaqueous potassium-ion batteries. ACS Energy Lett. 2017, 2, 1122-1127.

26

Piernas-Muñoz, M. J.; Castillo-Martínez, E.; Bondarchuk, O.; Armand, M.; Rojo, T. Higher voltage plateau cubic Prussian white for Na-ion batteries. J. Power Sources 2016, 324, 766-773.

27

Ren, W. H.; Qin, M. S.; Zhu, Z. X.; Yan, M. Y.; Li, Q.; Zhang, L.; Liu, D. N.; Mai, L. Q. Activation of sodium storage sites in Prussian blue analogues via surface etching. Nano Lett. 2017, 17, 4713-4718.

28

Zhou, L.; Zhao, D. Y.; Lou, X. W. LiNi0.5Mn1.5O4 hollow structures as high-performance cathodes for lithium-ion batteries. Angew. Chem. 2012, 124, 243-245.

29

Su, D. W.; Dou, S. X.; Wang, G. X. Hierarchical orthorhombic V2O5 hollow nanospheres as high performance cathode materials for sodium-ion batteries. J. Mater. Chem. A 2014, 2, 11185-11194.

30

Li, L. L.; Chu, Y.; Liu, Y.; Dong, L. H. Template-free synthesis and photocatalytic properties of novel Fe2O3 hollow spheres. J. Phys. Chem. C 2007, 111, 2123-2127.

31

Li, W. J.; Chou, S. L.; Wang, J. Z.; Kang, Y. M.; Wang, J. L.; Liu, Y.; Gu, Q. F.; Liu, H. K.; Dou, S. X. Facile method to synthesize Na-enriched Na1+xFeFe(CN)6 frameworks as cathode with superior electrochemical performance for sodium-ion batteries. Chem. Mater. 2015, 27, 1997-2003.

32

Yang, Y.; Liu, E. S.; Yan, X. M.; Ma, C. R.; Wen, W.; Liao, X. Z.; Ma, Z. F. Influence of structural imperfection on electrochemical behavior of Prussian blue cathode materials for sodium ion batteries. J. Electrochem. Soc. 2016, 163, A2117-A2123.

33

Wu, Q. F.; Wu, G. L.; Wang, L. D.; Hu, W. L.; Wu, H. J. Facile synthesis and optical properties of Prussian blue microcubes and hollow Fe2O3 microboxes. Mat. Sci. Semicon. Proc. 2015, 30, 476-481.

34

Li, X. N.; Liu, J. Y.; Rykov, A. I.; Han, H. X.; Jin, C. Z.; Liu, X.; Wang, J. H. Excellent photo-Fenton catalysts of Fe-Co Prussian blue analogues and their reaction mechanism study. Appl. Catal. B-Environ. 2015, 179, 196-205.

35

Desimoni, E.; Brunetti, B. X-ray photoelectron spectroscopic characterization of chemically modified electrodes used as chemical sensors and biosensors: A review. Chemosensors 2015, 3, 70-117.

36

Haight, S. M.; Schwartz, D. T.; Lilga, M. A. In situ oxidation state profiling of nickel hexacyanoferrate derivatized electrodes using line-imaging Raman spectroscopy and multivariate calibration. J. Electrochem. Soc. 1999, 146, 1866-1872.

37

Samain, L.; Gilbert, B.; Grandjean, F.; Long, G. J.; Strivay, D. Redox reactions in Prussian blue containing paint layers as a result of light exposure. J. Anal. At. Spectrom. 2013, 28, 524-535.

38

Xia, L.; McCreery, R. L. Structure and function of ferricyanide in the formation of chromate conversion coatings on aluminum aircraft alloy. J. Electrochem. Soc. 1999, 146, 3696-3701.

39

Boclair, J. W.; Braterman, P. S.; Brister, B. D.; Wang, Z. M.; Yarberry, F. Physical and chemical interactions between Mg: Al layered double hydroxide and hexacyanoferrate. J. Solid State Chem. 2001, 161, 249-258.

40

Takachi, M.; Matsuda, T.; Moritomo, Y. Structural, electronic, and electrochemical properties of LixCo[Fe(CN)6]0.902.9H2O. Jan. J. Appl. Phys. 2013, 52, 044301.

41

Han, L.; Yu, X. Y.; Lou, X. W. D. Formation of Prussian-blue-analog nanocages via a direct etching method and their conversion into Ni-Co-mixed oxide for enhanced oxygen evolution. Adv. Mater. 2016, 28, 4601-4605.

42

Huang, Y. X.; Xie, M.; Zhang, J. T.; Wang, Z. H.; Jiang, Y.; Xiao, G. H.; Li, S. J.; Li, L.; Wu, F.; Chen, R. J. et al. A novel border-rich Prussian blue synthetized by inhibitor control as cathode for sodium ion batteries. Nano Energy 2017, 39, 273-283.

43

Tang, K.; Fu, L. J.; White, R. J.; Yu, L. H.; Titirici, M. M.; Antonietti, M.; Maier, J. Hollow carbon nanospheres with superior rate capability for sodium-based batteries. Adv. Energy Mater. 2012, 2, 873-877.

44

Chen, R. J.; Huang, Y. X.; Xie, M.; Wang, Z. H.; Ye, Y. S.; Li, L.; Wu, F. Chemical inhibition method to synthesize highly crystalline Prussian blue analogs for sodium-ion battery cathodes. ACS Appl. Mater. Interfaces 2016, 8, 31669-31676.

45

Yuan, D. D.; Liang, X. M.; Wu, L.; Cao, Y. L.; Ai, X. P.; Feng, J. W.; Yang, H. X. A honeycomb-layered Na3Ni2SbO6: A high-rate and cycle-stable cathode for sodium-ion batteries. Adv. Mater. 2014, 26, 6301-6306.

46

Wang, P. F.; Yao, H. R.; Liu, X. Y.; Zhang, J. N.; Gu, L.; Yu, X. Q.; Yin, Y. X.; Guo, Y. G. Ti-substituted NaNi0.5Mn0.5−xTixO2 cathodes with reversible O3-P3 phase transition for high-performance sodium-ion batteries. Adv. Mater. 2017, 29, 1700210.

47

Chen, R. J.; Huang, Y. X.; Xie, M.; Zhang, Q. Y.; Zhang, X. X.; Li, L.; Wu, F. Preparation of Prussian blue submicron particles with a pore structure by two-step optimization for Na-ion battery cathodes. ACS Appl. Mater. Interfaces 2016, 8, 16078-16086.

48

Mizuno, Y.; Okubo, M.; Asakura, D.; Saito, T.; Hosono, E.; Saito, Y.; Oh-ishi, K.; Kudo, T.; Zhou, H. S. Impedance spectroscopic study on interfacial ion transfers in cyanide-bridged coordination polymer electrode with organic electrolyte. Electrochim. Acta 2012, 63, 139-145.

49

Fu, H. Y.; Liu, C. F.; Zhang, C. K.; Ma, W. D.; Wang, K.; Li, Z. Y.; Lu, X. M.; Cao, G. Z. Enhanced storage of sodium ions in Prussian blue cathode material through nickel doping. J. Mater. Chem. A 2017, 5, 9604-9610.

50

Xie, X. Q.; Zhao, M. Q.; Anasori, B.; Maleski, K.; Ren, C. E.; Li, J. W.; Byles, B. W.; Pomerantseva, E.; Wang, G.; Gogotsi, Y. Porous heterostructured mxene/carbon nanotube composite paper with high volumetric capacity for sodium-based energy storage devices. Nano Energy 2016, 26, 513-523.

51

Zhou, L. M.; Zhang, K.; Sheng, J. Z.; An, Q. Y.; Tao, Z. L.; Kang, Y. M.; Chen, J.; Mai, L. Q. Structural and chemical synergistic effect of CoS nanoparticles and porous carbon nanorods for high-performance sodium storage. Nano Energy 2017, 35, 281-289.

52

Chen, C. J.; Wen, Y. W.; Hu, X. L.; Ji, X. L.; Yan, M. Y.; Mai, L. Q.; Hu, P.; Shan, B.; Huang, Y. H. Na+ intercalation pseudocapacitance in graphene-coupled titanium oxide enabling ultra-fast sodium storage and long-term cycling. Nat. Commun. 2015, 6, 6929.

53

Zhang, K.; Park, M.; Zhou, L. M.; Lee, G. H.; Li, W. J.; Kang, Y. M.; Chen, J. Urchin-like CoSe2 as a high-performance anode material for sodium-ion batteries. Adv. Funct. Mater. 2016, 26, 6728-6735.

54

Hu, Z.; Zhu, Z. Q.; Cheng, F. Y.; Zhang, K.; Wang, J. B.; Chen, C. C.; Chen, J. Pyrite FeS2 for high-rate and long-life rechargeable sodium batteries. Energy Environ. Sci. 2015, 8, 1309-1316.

55

Liu, Y.; Qiao, Y.; Zhang, W. X.; Li, Z.; Ji, X.; Miao, L.; Yuan, L. X.; Hu, X. L.; Huang, Y. H. Sodium storage in Na-rich NaxFeFe(CN)6 nanocubes. Nano Energy 2015, 12, 386-393.

Nano Research
Pages 3979-3990
Cite this article:
Tang X, Liu H, Su D, et al. Hierarchical sodium-rich Prussian blue hollow nanospheres as high-performance cathode for sodium-ion batteries. Nano Research, 2018, 11(8): 3979-3990. https://doi.org/10.1007/s12274-018-1979-y

798

Views

102

Crossref

N/A

Web of Science

102

Scopus

14

CSCD

Altmetrics

Received: 08 November 2017
Revised: 21 December 2017
Accepted: 30 December 2017
Published: 25 January 2018
© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2018
Return