Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
Recently, Prussian blue and its analogues (PBAs) have attracted tremendous attention as cathode materials for sodium-ion batteries because of their good cycling performance, low cost, and environmental friendliness. However, they still suffer from kinetic problems associated with the solid-state diffusion of sodium ions during charge and discharge processes, which leads to low specific capacity and poor rate performances. In this work, novel sodium iron hexacyanoferrate nanospheres with a hierarchical hollow architecture have been fabricated as cathode material for sodium-ion batteries by a facile template method. Due to the unique hollow sphere morphology, sodium iron hexacyanoferrate nanospheres can provide large numbers of active sites and high diffusion dynamics for sodium ions, thus delivering a high specific capacity (142 mAh/g), a superior rate capability, and an excellent cycling stability. Furthermore, the sodium insertion/extraction mechanism has been studied by in situ X-ray diffraction, which provides further insight into the crystal structure change of the sodium iron hexacyanoferrate nanosphere cathode material during charge and discharge processes.
Armand, M.; Tarascon, J. M. Building better batteries. Nature 2008, 451, 652-657.
Kim, S. W.; Seo, D. H.; Ma, X. H.; Ceder, G.; Kang, K. Electrode materials for rechargeable sodium-ion batteries: Potential alternatives to current lithium-ion batteries. Adv. Energy Mater. 2012, 2, 710-721.
Ong, S. P.; Chevrier, V. L.; Hautier, G.; Jain, A.; Moore, C.; Kim, S.; Ma, X. H.; Ceder, G. Voltage, stability and diffusion barrier differences between sodium-ion and lithium-ion intercalation materials. Energy Environ. Sci. 2011, 4, 3680-3688.
Lee, H. W.; Wang, R. Y.; Pasta, M.; Lee, S. W.; Liu, N.; Cui, Y. Manganese hexacyanomanganate open framework as a high-capacity positive electrode material for sodium-ion batteries. Nat. Commun. 2014, 5, 5280.
Song, J.; Wang, L.; Lu, Y. H.; Liu, J.; Guo, B. K.; Xiao, P. H.; Lee, J. J.; Yang, X. Q.; Henkelman, G.; Goodenough, J. B. Removal of interstitial H2O in hexacyanometallates for a superior cathode of a sodium-ion battery. J. Am. Chem. Soc. 2015, 137, 2658-2664.
Liu, Q. N.; Hu, Z.; Chen, M. Z.; Gu, Q. F.; Dou, Y. H.; Sun, Z. Q.; Chou, S. L.; Dou, S. X. Multiangular rod-shaped Na0.44MnO2 as cathode materials with high rate and long life for sodium-ion batteries. ACS Appl. Mater. Interfaces 2017, 9, 3644-3652.
Jian, Z. L.; Han, W. Z.; Lu, X.; Yang, H. X.; Hu, Y. S.; Zhou, J.; Zhou, Z. B.; Li, J. Q.; Chen, W.; Chen, D. F. et al. Superior electrochemical performance and storage mechanism of Na3V2(PO4)3 cathode for room-temperature sodium-ion batteries. Adv. Energy Mater. 2013, 3, 156-160.
Kim, D.; Kang, S. H.; Slater, M.; Rood, S.; Vaughey, J. T.; Karan, N.; Balasubramanian, M.; Johnson, C. S. Enabling sodium batteries using lithium-substituted sodium layered transition metal oxide cathodes. Adv. Energy Mater. 2011, 1, 333-336.
Chen, M. Z.; Chen, L. N.; Hu, Z.; Liu, Q. N.; Zhang, B. W.; Hu, Y. X.; Gu, Q. F.; Wang, J. L.; Wang, L. Z.; Guo, X. D. et al. Carbon-coated Na3.32Fe2.34(P2O7)2 cathode material for high-rate and long-life sodium-ion batteries. Adv. Mater. 2017, 29, 1605535.
Neff, V. D. Electrochemical oxidation and reduction of thin films of Prussian blue. J. Electrochem. Soc. 1978, 125, 886-887.
Yue, Y. F.; Binder, A. J.; Guo, B. K.; Zhang, Z. Y.; Qiao, Z. A.; Tian, C. C.; Dai, S. Mesoporous Prussian blue analogues: Template-free synthesis and sodium-ion battery applications. Angew. Chem., Int. Ed. 2014, 53, 3134-3137.
Lu, Y. H.; Wang, L.; Cheng, J. G.; Goodenough, J. B. Prussian blue: A new framework of electrode materials for sodium batteries. Chem. Commun. 2012, 48, 6544-6546.
Wang, L.; Lu, Y. H.; Liu, J.; Xu, M. W.; Cheng, J. G.; Zhang, D. W.; Goodenough, J. B. A superior low-cost cathode for a Na-ion battery. Angew. Chem., Int. Ed. 2013, 52, 1964-1967.
You, Y.; Wu, X. L.; Yin, Y. X.; Guo, Y. G. High-quality Prussian blue crystals as superior cathode materials for room-temperature sodium-ion batteries. Energy Environ. Sci. 2014, 7, 1643-1647.
Jiang, Y. Z.; Yu, S. L.; Wang, B. Q.; Li, Y.; Sun, W. P.; Lu, Y. H.; Yan, M.; Song, B.; Dou, S. X. Prussian blue@C composite as an ultrahigh-rate and long-life sodium-ion battery cathode. Adv. Funct. Mater. 2016, 26, 5315-5321.
Wang, R. Y.; Wessells, C. D.; Huggins, R. A.; Cui, Y. Highly reversible open framework nanoscale electrodes for divalent ion batteries. Nano Lett. 2013, 13, 5748-5752.
Su, D. W.; McDonagh, A.; Qiao, S. Z.; Wang, G. X. High-capacity aqueous potassium-ion batteries for large-scale energy storage. Adv. Mater. 2017, 29, 1604007.
Matsuda, T.; Takachi, M.; Moritomo, Y. A sodium manganese ferrocyanide thin film for Na-ion batteries. Chem. Commun. 2013, 49, 2750-2752.
Wu, X. Y.; Luo, Y.; Sun, M. Y.; Qian, J. F.; Cao, Y. L.; Ai, X. P.; Yang, H. X. Low-defect Prussian blue nanocubes as high capacity and long life cathodes for aqueous Na-ion batteries. Nano Energy 2015, 13, 117-123.
Wu, X. Y.; Sun, M. Y.; Shen, Y. F.; Qian, J. F.; Cao, Y. L.; Ai, X. P.; Yang, H. X. Energetic aqueous rechargeable sodium-ion battery based on Na2CuFe(CN)6-NaTi2(PO4)3 intercalation chemistry. ChemSusChem 2014, 7, 407-411.
Wu, X. Y.; Cao, Y. L.; Ai, X. P.; Qian, J. F.; Yang, H. X. A low-cost and environmentally benign aqueous rechargeable sodium-ion battery based on NaTi2(PO4)3-Na2NiFe(CN)6 intercalation chemistry. Electrochem. Commun. 2013, 31, 145-148.
Wang, L.; Song, J.; Qiao, R. M.; Wray, L. A.; Hossain, M. A.; Chuang, Y. D.; Yang, W. L.; Lu, Y. H.; Evans, D.; Lee, J. J. et al. Rhombohedral Prussian white as cathode for rechargeable sodium-ion batteries. J. Am. Chem. Soc. 2015, 137, 2548-2554.
Wu, X. Y.; Jian, Z. L.; Li, Z. F.; Ji, X. L. Prussian white analogues as promising cathode for non-aqueous potassium-ion batteries. Electrochem. Commun. 2017, 77, 54-57.
You, Y.; Yu, X. Q.; Yin, Y. X.; Nam, K. W.; Guo, Y. G. Sodium iron hexacyanoferrate with high Na content as a Na-rich cathode material for Na-ion batteries. Nano Res. 2015, 8, 117-128.
He, G.; Nazar, L. F. Crystallite size control of Prussian white analogues for nonaqueous potassium-ion batteries. ACS Energy Lett. 2017, 2, 1122-1127.
Piernas-Muñoz, M. J.; Castillo-Martínez, E.; Bondarchuk, O.; Armand, M.; Rojo, T. Higher voltage plateau cubic Prussian white for Na-ion batteries. J. Power Sources 2016, 324, 766-773.
Ren, W. H.; Qin, M. S.; Zhu, Z. X.; Yan, M. Y.; Li, Q.; Zhang, L.; Liu, D. N.; Mai, L. Q. Activation of sodium storage sites in Prussian blue analogues via surface etching. Nano Lett. 2017, 17, 4713-4718.
Zhou, L.; Zhao, D. Y.; Lou, X. W. LiNi0.5Mn1.5O4 hollow structures as high-performance cathodes for lithium-ion batteries. Angew. Chem. 2012, 124, 243-245.
Su, D. W.; Dou, S. X.; Wang, G. X. Hierarchical orthorhombic V2O5 hollow nanospheres as high performance cathode materials for sodium-ion batteries. J. Mater. Chem. A 2014, 2, 11185-11194.
Li, L. L.; Chu, Y.; Liu, Y.; Dong, L. H. Template-free synthesis and photocatalytic properties of novel Fe2O3 hollow spheres. J. Phys. Chem. C 2007, 111, 2123-2127.
Li, W. J.; Chou, S. L.; Wang, J. Z.; Kang, Y. M.; Wang, J. L.; Liu, Y.; Gu, Q. F.; Liu, H. K.; Dou, S. X. Facile method to synthesize Na-enriched Na1+xFeFe(CN)6 frameworks as cathode with superior electrochemical performance for sodium-ion batteries. Chem. Mater. 2015, 27, 1997-2003.
Yang, Y.; Liu, E. S.; Yan, X. M.; Ma, C. R.; Wen, W.; Liao, X. Z.; Ma, Z. F. Influence of structural imperfection on electrochemical behavior of Prussian blue cathode materials for sodium ion batteries. J. Electrochem. Soc. 2016, 163, A2117-A2123.
Wu, Q. F.; Wu, G. L.; Wang, L. D.; Hu, W. L.; Wu, H. J. Facile synthesis and optical properties of Prussian blue microcubes and hollow Fe2O3 microboxes. Mat. Sci. Semicon. Proc. 2015, 30, 476-481.
Li, X. N.; Liu, J. Y.; Rykov, A. I.; Han, H. X.; Jin, C. Z.; Liu, X.; Wang, J. H. Excellent photo-Fenton catalysts of Fe-Co Prussian blue analogues and their reaction mechanism study. Appl. Catal. B-Environ. 2015, 179, 196-205.
Desimoni, E.; Brunetti, B. X-ray photoelectron spectroscopic characterization of chemically modified electrodes used as chemical sensors and biosensors: A review. Chemosensors 2015, 3, 70-117.
Haight, S. M.; Schwartz, D. T.; Lilga, M. A. In situ oxidation state profiling of nickel hexacyanoferrate derivatized electrodes using line-imaging Raman spectroscopy and multivariate calibration. J. Electrochem. Soc. 1999, 146, 1866-1872.
Samain, L.; Gilbert, B.; Grandjean, F.; Long, G. J.; Strivay, D. Redox reactions in Prussian blue containing paint layers as a result of light exposure. J. Anal. At. Spectrom. 2013, 28, 524-535.
Xia, L.; McCreery, R. L. Structure and function of ferricyanide in the formation of chromate conversion coatings on aluminum aircraft alloy. J. Electrochem. Soc. 1999, 146, 3696-3701.
Boclair, J. W.; Braterman, P. S.; Brister, B. D.; Wang, Z. M.; Yarberry, F. Physical and chemical interactions between Mg: Al layered double hydroxide and hexacyanoferrate. J. Solid State Chem. 2001, 161, 249-258.
Takachi, M.; Matsuda, T.; Moritomo, Y. Structural, electronic, and electrochemical properties of LixCo[Fe(CN)6]0.902.9H2O. Jan. J. Appl. Phys. 2013, 52, 044301.
Han, L.; Yu, X. Y.; Lou, X. W. D. Formation of Prussian-blue-analog nanocages via a direct etching method and their conversion into Ni-Co-mixed oxide for enhanced oxygen evolution. Adv. Mater. 2016, 28, 4601-4605.
Huang, Y. X.; Xie, M.; Zhang, J. T.; Wang, Z. H.; Jiang, Y.; Xiao, G. H.; Li, S. J.; Li, L.; Wu, F.; Chen, R. J. et al. A novel border-rich Prussian blue synthetized by inhibitor control as cathode for sodium ion batteries. Nano Energy 2017, 39, 273-283.
Tang, K.; Fu, L. J.; White, R. J.; Yu, L. H.; Titirici, M. M.; Antonietti, M.; Maier, J. Hollow carbon nanospheres with superior rate capability for sodium-based batteries. Adv. Energy Mater. 2012, 2, 873-877.
Chen, R. J.; Huang, Y. X.; Xie, M.; Wang, Z. H.; Ye, Y. S.; Li, L.; Wu, F. Chemical inhibition method to synthesize highly crystalline Prussian blue analogs for sodium-ion battery cathodes. ACS Appl. Mater. Interfaces 2016, 8, 31669-31676.
Yuan, D. D.; Liang, X. M.; Wu, L.; Cao, Y. L.; Ai, X. P.; Feng, J. W.; Yang, H. X. A honeycomb-layered Na3Ni2SbO6: A high-rate and cycle-stable cathode for sodium-ion batteries. Adv. Mater. 2014, 26, 6301-6306.
Wang, P. F.; Yao, H. R.; Liu, X. Y.; Zhang, J. N.; Gu, L.; Yu, X. Q.; Yin, Y. X.; Guo, Y. G. Ti-substituted NaNi0.5Mn0.5−xTixO2 cathodes with reversible O3-P3 phase transition for high-performance sodium-ion batteries. Adv. Mater. 2017, 29, 1700210.
Chen, R. J.; Huang, Y. X.; Xie, M.; Zhang, Q. Y.; Zhang, X. X.; Li, L.; Wu, F. Preparation of Prussian blue submicron particles with a pore structure by two-step optimization for Na-ion battery cathodes. ACS Appl. Mater. Interfaces 2016, 8, 16078-16086.
Mizuno, Y.; Okubo, M.; Asakura, D.; Saito, T.; Hosono, E.; Saito, Y.; Oh-ishi, K.; Kudo, T.; Zhou, H. S. Impedance spectroscopic study on interfacial ion transfers in cyanide-bridged coordination polymer electrode with organic electrolyte. Electrochim. Acta 2012, 63, 139-145.
Fu, H. Y.; Liu, C. F.; Zhang, C. K.; Ma, W. D.; Wang, K.; Li, Z. Y.; Lu, X. M.; Cao, G. Z. Enhanced storage of sodium ions in Prussian blue cathode material through nickel doping. J. Mater. Chem. A 2017, 5, 9604-9610.
Xie, X. Q.; Zhao, M. Q.; Anasori, B.; Maleski, K.; Ren, C. E.; Li, J. W.; Byles, B. W.; Pomerantseva, E.; Wang, G.; Gogotsi, Y. Porous heterostructured mxene/carbon nanotube composite paper with high volumetric capacity for sodium-based energy storage devices. Nano Energy 2016, 26, 513-523.
Zhou, L. M.; Zhang, K.; Sheng, J. Z.; An, Q. Y.; Tao, Z. L.; Kang, Y. M.; Chen, J.; Mai, L. Q. Structural and chemical synergistic effect of CoS nanoparticles and porous carbon nanorods for high-performance sodium storage. Nano Energy 2017, 35, 281-289.
Chen, C. J.; Wen, Y. W.; Hu, X. L.; Ji, X. L.; Yan, M. Y.; Mai, L. Q.; Hu, P.; Shan, B.; Huang, Y. H. Na+ intercalation pseudocapacitance in graphene-coupled titanium oxide enabling ultra-fast sodium storage and long-term cycling. Nat. Commun. 2015, 6, 6929.
Zhang, K.; Park, M.; Zhou, L. M.; Lee, G. H.; Li, W. J.; Kang, Y. M.; Chen, J. Urchin-like CoSe2 as a high-performance anode material for sodium-ion batteries. Adv. Funct. Mater. 2016, 26, 6728-6735.
Hu, Z.; Zhu, Z. Q.; Cheng, F. Y.; Zhang, K.; Wang, J. B.; Chen, C. C.; Chen, J. Pyrite FeS2 for high-rate and long-life rechargeable sodium batteries. Energy Environ. Sci. 2015, 8, 1309-1316.
Liu, Y.; Qiao, Y.; Zhang, W. X.; Li, Z.; Ji, X.; Miao, L.; Yuan, L. X.; Hu, X. L.; Huang, Y. H. Sodium storage in Na-rich NaxFeFe(CN)6 nanocubes. Nano Energy 2015, 12, 386-393.