Article Link
Collect
Submit Manuscript
Show Outline
Outline
Graphical Abstract
Abstract
Keywords
Electronic Supplementary Material
References
Show full outline
Hide outline
Research Article

Hierarchical porous onion-shaped LiMn2O4 as ultrahigh-rate cathode material for lithium ion batteries

Zihe Li1Xiangming Feng1()Liwei Mi2Jinyun Zheng1Xiaoyang Chen1Weihua Chen1,3()
College of Chemistry and Molecular EngineeringZhengzhou UniversityZhengzhou450001China
Center for Advanced Materials ResearchZhongyuan University of TechnologyZhengzhou450007China
National Engineering and Research Center for Adv. Polymer Processing TechnologyZhengzhou UniversityZhengzhou450001China
Show Author Information

Graphical Abstract

View original image Download original image

Abstract

Spinel LiMn2O4 is a widely utilized cathode material for Li-ion batteries. However, its applications are limited by its poor energy density and power density. Herein, a novel hierarchical porous onion-like LiMn2O4(LMO) was prepared to shorten the Li+ diffusion pathway with the presence of uniform pores and nanosized primary particles. The growth mechanism of the porous onion-like LiMn2O4 was analyzed to control the morphology and the crystal structure so that it forms a polyhedral crystal structure with reduced Mn dissolution. In addition, graphene was added to the cathode (LiMn2O4/graphene) to enhance the electronic conductivity. The synthesized LiMn2O4/graphene exhibited an ultrahigh-rate performance of 110.4 mAh·g-1 at 50 C and an outstanding energy density at a high power density, maintaining 379.4 Wh·kg-1 at 25, 293 W·kg-1. Besides, it shows durable stability, with only 0.02% decrease in the capacity per cycle at 10 C. Furthermore, the (LiMn2O4/graphene)/graphite full-cell exhibited a high discharge capacity. This work provides a promising method for the preparation of outstanding, integrated cathodes for potential applications in lithium ion batteries.

Electronic Supplementary Material

Download File(s)
12274_2018_1986_MOESM1_ESM.pdf (1.9 MB)

References

1

Padhi, A. K.; Nanjundaswamy, K. S.; Goodenough, J. B. Phospho-olivines as positive-electrode materials for rechargeable lithium batteries. J. Eectrochem. Soc. 1997, 144, 1188-1194.

2

Armand, M.; Tarascon, J. M. Building better batteries. Nature 2008, 451, 652-657.

3

Lee, E. -S.; Huq, A.; Chang, H. -Y.; Manthiram, A. High-voltage, high-energy layered-spinel composite cathodes with superior cycle life for lithium-ion batteries. Chem. Mater. 2012, 24, 600-612.

4

Cao, F. -F.; Guo, Y. -G.; Zheng, S. -F.; Wu, X. -L.; Jiang, L. -Y.; Bi, R. -R.; Wan, L. -J.; Maier, J. Symbiotic coaxial nanocables: Facile synthesis and an efficient and elegant morphological solution to the lithium storage problem. Chem. Mater. 2010, 22, 1908-1914.

5

Zhou, L.; Zhao, D. Y.; Lou, X. W. LiNi0.5Mn1.5O4 hollow structures as high-performance cathodes for lithium-ion batteries. Angew. Chem., Int. Ed. 2012, 51, 239-241.

6

Yang, J. S.; Xiao, L. F.; He, W.; Fan, J. W.; Chen, Z. X.; Ai, X. P.; Yang, H. X.; Cao, Y. L. Understanding voltage decay in lithium-rich manganese-based layered cathode materials by limiting cutoff voltage. ACS Appl. Mater. Interfaces 2016, 8, 18867-18877.

7

Lee, S.; Cho, Y.; Song, H. -K.; Lee, K. T.; Cho, J. Carbon-coated single-crystal LiMn2O4 nanoparticle clusters as cathode material for high-energy and high-power lithium-ion batteries. Angew. Chem., Int. Ed. 2012, 124, 8878-8882.

8

Saubanère, M.; McCalla, E.; Tarascon, J. -M.; Doublet, M. -L. The intriguing question of anionic redox in high-energy density cathodes for Li-ion batteries. Energy Environ. Sci. 2016, 9, 984-991.

9

Ryou, M. -H.; Lee, Y. M.; Park, J. -K.; Choi, J. W. Mussel-inspired polydopamine-treated polyethylene separators for high-power Li-ion batteries. Adv. Mater. 2011, 23, 3066-3070.

10

Li, Z.; Huang, Y. M.; Yuan, L. X.; Hao, Z. X.; Huang, Y. H. Status and prospects in sulfur-carbon composites as cathode materials for rechargeable lithium-sulfur batteries. Carbon 2015, 92, 41-63.

11

Chen, J.; Song, W. X.; Hou, H.; S. Zhang, Y.; Jing, M. J.; Jia, X. N.; Ji, X. B. Ti3+ self-doped dark rutile TiO2 ultrafine nanorods with durable high-rate capability for lithium-ion batteries. Adv. Funct. Mater. 2015, 25, 6793-6801.

12

Liu, S.; Feng, J. K.; Bian, X. F.; Qian, Y. T.; Liu, J.; Xu, H. Nanoporous germanium as high-capacity lithium-ion battery anode. Nano Energy 2015, 13, 651-657.

13

Park, O. K.; Cho, Y.; Lee, S.; Yoo, H. -C.; Song, H. -K.; Cho, J. Who will drive electric vehicles, olivine or spinel? Energy Environ. Sci. 2011, 4, 1621-1633.

14

Wang, H.; Ben, L. B.; Yu, H. L.; Chen, Y. Y.; Yang, X. N.; Huang, X. J. Understanding the effects of surface reconstruction on the electrochemical cycling performance of the spinel LiNi0.5Mn1.5O4 cathode material at elevated temperatures. J. Mater. Chem. A 2017, 5, 822-834.

15

He, H. B.; Cong, H. J.; Sun, Y.; Zan, L.; Zhang, Y. X. Spinel-layered integrate structured nanorods with both high capacity and superior high-rate capability as cathode material for lithium-ion batteries. Nano Res. 2017, 10, 556-569.

16

Zettsu, N.; Yoda, T.; Onodera, H.; Handa, N.; Kondo, H.; Teshima, K. Growth of hollow-structured LiMn2O4 crystals starting from Mn metal in molten KCl through the microscale Kirkendall effect. CrystEngComm 2016, 18, 2105-2111.

17

Xu, G. J.; Liu, Z. H.; Zhang, C. J.; Cui, G. L.; Chen, L. Q. Strategies for improving the cyclability and thermo-stability of LiMn2O4-based batteries at elevated temperatures. J. Mater. Chem. A 2015, 3, 4092-4123.

18

Sun, Y. -K.; Lee, M. -J.; Yoon, C. S.; Hassoun, J.; Amine, K.; Scrosati, B. The role of AlF3 coatings in improving electrochemical cycling of Li-enriched nickel-manganese oxide electrodes for Li-ion batteries. Adv. Mater. 2012, 24, 1192-1196.

19

Hosono, E.; Kudo, T.; Honma, I.; Matsuda, H.; Zhou, H. S. Synthesis of single crystalline spinel LiMn2O4 nanowires for a lithium ion battery with high power density. Nano Lett. 2009, 9, 1045-1051.

20

Lee, S.; Cho, Y.; Song, H. -K.; Lee, K. T.; Cho, J. Carbon-coated single-crystal LiMn2O4 nanoparticle clusters as cathode material for high-energy and high-power Lithium-ion batteries. Angew. Chem., Int. Ed. 2012, 51, 8748-8752.

21

He, J. R.; Chen, Y. F.; Li, P. J.; Fu, F.; Liu, J. B.; Wang, Z. G. Facile fabrication of RGO wrapped LiMn2O4 nanorods as a cathode with enhanced specific capacity. RSC Adv. 2015, 5, 80063-80068.

22

Xue, Y.; Wang, Z. B.; Zheng, L. L.; Yu, F. D.; Liu, B. S.; Zhang, Y.; Ke, K. Investigation on preparation and performance of spinel LiNi0.5Mn1.5O4 with different microstructures for lithium-ion batteries. Sci. Rep. 2015, 5, 13299.

23

Mandal, S.; Rojas, R. M.; Amarilla, J. M.; Calle, P.; Kosova, N. V.; Anufrienko, V. F.; Rojo, J. M. High temperature Co-doped LiMn2O4-based spinels. Structural, electrical, and electrochemical characterization. Chem. Mater. 2002, 14, 1598-1605.

24

Wang, Y. G.; Li, H. Q.; He, P.; Hosono, E.; Zhou, H. S. Nano active materials for lithium-ion batteries. Nanoscale 2010, 2, 1294-1305.

25

Kim, D. K.; Muralidharan, P.; Lee, H. -W.; Ruffo, R.; Yang, Y.; Chan, C. K.; Peng, H. L.; Huggins, R. A.; Cui, Y. Spinel LiMn2O4 nanorods as lithium ion battery cathodes. Nano Lett. 2008, 8, 3948-3952.

26

Ding, Y. -L.; Xie, J.; Cao, G. -S.; Zhu, T. -J.; Yu, H. -M.; Zhao, X. -B. Single-crystalline LiMn2O4 nanotubes synthesized via template-engaged reaction as cathodes for high-power lithium ion batteries. Adv. Funct. Mater. 2011, 21, 348-355.

27

Fan, J. M.; Yu, Y.; Wang, Y.; Wu, Q. -H.; Zheng, M. S.; Dong, Q. F. Nonaqueous synthesis of nano-sized LiMnPO4@C as a cathode material for high performance lithium ion batteries. Electrochim. Acta 2016, 194, 52-58.

28

Chen, S. G.; Wei, Z. D.; Qi, X. Q.; Dong, L. C.; Guo, Y. -G.; Wan, L. J.; Shao, Z. G.; Li, L. Nanostructured polyaniline-decorated Pt/C@pani core-shell catalyst with enhanced durability and activity. J. Am. Chem. Soc. 2012, 134, 13252-13255.

29

Maier, J. Nanoionics: Ion transport and electrochemical storage in confined systems. Nat. Mater. 2005, 4, 805-815.

30

Fan, L. -Z.; Hu, Y. -S.; Maier, J.; Adelhelm, P.; Smarsly, B.; Antonietti, M. High electroactivity of polyaniline in supercapacitors by using a hierarchically porous carbon monolith as a support. Adv. Funct. Mater. 2007, 17, 3083-3087.

31

Luo, J. -Y.; Xiong, H. -M.; Xia, Y. -Y. LiMn2O4 nanorods, nanothorn microspheres, and hollow nanospheres as enhanced cathode materials of lithium ion battery. J. Phys. Chem. C 2008, 112, 12051-12057.

32

Tang, W.; Liu, L. L.; Tian, S.; Li, L.; Li, L. L.; Yue, Y. B.; Bai, Y.; Wu, Y. P.; Zhu, K.; Holze, R. LiMn2O4 nanorods as a super-fast cathode material for aqueous rechargeable lithium batteries. Electrochem. Commun. 2011, 13, 1159-1162.

33

Luo, J. Y.; Wang, Y. -G.; Xiong, H. -M.; Xia, Y. -Y. Ordered mesoporous spinel LiMn2O4 by a soft-chemical process as a cathode material for lithium-ion batteries. Chem. Mater. 2007, 19, 4791-4795.

34

Lee, H. W.; Muralidharan, P.; Ruffo, R.; Mari, C. M.; Cui, Y.; Kim, D. K. Ultrathin spinel LiMn2O4 nanowires as high power cathode materials for Li-ion batteries. Nano Lett. 2010, 10, 3852-3856.

35

Wang, Y. H.; Wang, Y. H.; Jia, D. S.; Peng, Z.; Xia, Y. Y.; Zheng, G. F. All-nanowire based Li-ion full cells using homologous Mn2O3 and LiMn2O4. Nano Lett. 2014, 14, 1080-1084.

36

Zhu, C. Y.; Saito, G.; Akiyama, T. A new CaCO3-template method to synthesize nanoporous manganese oxide hollow structures and their transformation to high-performance LiMn2O4 cathodes for lithium-ion batteries. J. Mater. Chem. A 2013, 1, 7077-7082.

37

Jeong, M.; Lee, M. -J.; Cho, J.; Lee, S. Surface Mn oxidation state controlled spinel LiMn2O4 as a cathode material for high-energy Li-ion batteries. Adv. Energy Mater. 2015, 5, 1500440.

38

Guan, D. S.; Jeevarajan, J. A.; Wang, Y. Enhanced cycleability of LiMn2O4 cathodes by atomic layer deposition of nanosized-thin Al2O3 coatings. Nanoscale 2011, 3, 1465-1469.

39

Moorhead-Rosenberg, Z.; Huq, A.; Goodenough, J. P.; Manthiram, A. Electronic and electrochemical properties of Li1−xMn1.5Ni0.5O4 spinel cathodes as a function of lithium content and cation ordering. Chem. Mater. 2015, 27, 6934-6945.

40

Chen, K. S.; Xu, R.; Luu, N. S.; Secor, E. B.; Hamamoto, K.; Li, Q.; Kim, S.; Sangwan, V. K.; Balla, I.; Guiney, L. M. et al. Comprehensive enhancement of nanostructured lithium-ion battery cathode materials via conformal graphene dispersion. Nano Lett. 2017, 17, 2539-2546.

41

Cheng, F. Y.; Wang, H. B.; Zhu, Z. Q.; Wang, Y.; Zhang, T. R.; Tao, Z. L.; Chen, J. Porous LiMn2O4 nanorods with durable high-rate capability for rechargeable Li-ion batteries. Energy Environ. Sci. 2011, 4, 3668-3675.

42

Li, Y. Y.; Feng, X. M.; Cui, S. Z.; Shi, Q. Z.; Mi, L. W.; Chen, W. H. From α-NaMnO2 to crystal water containing Na-birnessite: Enhanced cycling stability for sodium-ion batteries. CrystEngComm 2016, 18, 3136-3141.

43

Lin, H. B.; Hu, J. N.; Rong, H. B.; Zhang, Y. M.; Mai, S. W.; Xing, L. D.; Xu, M. Q.; Li, X. P.; Li, W. S. Porous LiMn2O4 cubes architectured with single-crystalline nanoparticles and exhibiting excellent cyclic stability and rate capability as the cathode of a lithium ion battery. J. Mater. Chem. A 2014, 2, 9272-9279.

44

Zhou, H. W.; Ding, X. N.; Liu, G. C.; Jiang, Y.; Yin, Z.; Wang, X. D. Preparation and characterization of ultralong spinel lithium manganese oxide nanofiber cathode via electrospinning method. Electrochim. Acta 2015, 152, 274-279.

45

Liu, H. D.; Wang, J.; Zhang, X. F.; Zhou, D.; Qi, X.; Qiu, B.; Fang, J. H.; Kloepsch, R.; Schumacher, G.; Liu, Z. P. et al. Morphological evolution of high-voltage spinel LiNi0.5Mn1.5O4 cathode materials for lithium-ion batteries: The critical effects of surface orientations and particle size. ACS Appl. Mater. Interfaces 2016, 8, 4661-4675.

46

Hung, I. M.; Yang, Y. C.; Su, H. J.; Zhang, J. Influences of the surfactant on the performance of nano-LiMn2O4 cathode material for lithium-ion battery. Ceram. Int. 2015, 41, S779-S786.

47

Mohanty, D.; Sefat, A. S.; Payzant, E. A.; Li, J. L.; Wood D. L. Ⅲ; Daniela, C. Unconventional irreversible structural changes in a high-voltage Li-Mn-rich oxide for lithium-ion battery cathodes. J. Power Sources. 2015, 283, 423-428.

48

Goodenough, J. B.; Park, K. S. The Li-ion rechargeable battery: A perspective. J. Am. Chem. Soc. 2013, 135, 1167-1176.

49

Zu, C. -X.; Li, H. Thermodynamic analysis on energy densities of batteries. Energy Environ. Sci. 2011, 4, 2614-2624.

50

Wang, J. F.; Liu, W.; Liu, S.; Chen, J. X.; Wang, H. L.; Zhao, S. P. Biomass derived fabrication of a novel sea cucumber-like LiMn2O4/C composite with a hierarchical porous structure as the cathode for lithium-ion batteries. Electrochim. Acta 2016, 188, 645-652.

51

Deng, J. Q.; Pan, J.; Yao, Q. R.; Wang, Z. M.; Zhou, H. Y.; Rao, J. H. Porous core-shell LiMn2O4 microellipsoids as high-performance cathode materials for Li-ion batteries. J. Power Sources. 2015, 278, 370-374.

52

Nageswaran, S.; Keppeler, M.; Kim, S. J.; Srinivasan, M. Morphology controlled Si-modified LiNi0.5Mn1.5O4 microspheres as high performance high voltage cathode materials in lithium ion batteries. J. Power Sources. 2017, 346, 89-96.

Nano Research
Pages 4038-4048
Cite this article:
Li Z, Feng X, Mi L, et al. Hierarchical porous onion-shaped LiMn2O4 as ultrahigh-rate cathode material for lithium ion batteries. Nano Research, 2018, 11(8): 4038-4048. https://doi.org/10.1007/s12274-018-1986-z
Metrics & Citations  
Article History
Copyright
Return